ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmfss Unicode version

Theorem lmfss 14480
Description: Inclusion of a function having a limit (used to ensure the limit relation is a set, under our definition). (Contributed by NM, 7-Dec-2006.) (Revised by Mario Carneiro, 23-Dec-2013.)
Assertion
Ref Expression
lmfss  |-  ( ( J  e.  (TopOn `  X )  /\  F
( ~~> t `  J
) P )  ->  F  C_  ( CC  X.  X ) )

Proof of Theorem lmfss
StepHypRef Expression
1 lmfpm 14479 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  F
( ~~> t `  J
) P )  ->  F  e.  ( X  ^pm  CC ) )
2 toponmax 14261 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
3 cnex 8003 . . . . 5  |-  CC  e.  _V
4 elpmg 6723 . . . . 5  |-  ( ( X  e.  J  /\  CC  e.  _V )  -> 
( F  e.  ( X  ^pm  CC )  <->  ( Fun  F  /\  F  C_  ( CC  X.  X
) ) ) )
52, 3, 4sylancl 413 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  ( F  e.  ( X  ^pm  CC ) 
<->  ( Fun  F  /\  F  C_  ( CC  X.  X ) ) ) )
65adantr 276 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  F
( ~~> t `  J
) P )  -> 
( F  e.  ( X  ^pm  CC )  <->  ( Fun  F  /\  F  C_  ( CC  X.  X
) ) ) )
71, 6mpbid 147 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  F
( ~~> t `  J
) P )  -> 
( Fun  F  /\  F  C_  ( CC  X.  X ) ) )
87simprd 114 1  |-  ( ( J  e.  (TopOn `  X )  /\  F
( ~~> t `  J
) P )  ->  F  C_  ( CC  X.  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2167   _Vcvv 2763    C_ wss 3157   class class class wbr 4033    X. cxp 4661   Fun wfun 5252   ` cfv 5258  (class class class)co 5922    ^pm cpm 6708   CCcc 7877  TopOnctopon 14246   ~~> tclm 14423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pm 6710  df-top 14234  df-topon 14247  df-lm 14426
This theorem is referenced by:  lmss  14482
  Copyright terms: Public domain W3C validator