ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmfss Unicode version

Theorem lmfss 12884
Description: Inclusion of a function having a limit (used to ensure the limit relation is a set, under our definition). (Contributed by NM, 7-Dec-2006.) (Revised by Mario Carneiro, 23-Dec-2013.)
Assertion
Ref Expression
lmfss  |-  ( ( J  e.  (TopOn `  X )  /\  F
( ~~> t `  J
) P )  ->  F  C_  ( CC  X.  X ) )

Proof of Theorem lmfss
StepHypRef Expression
1 lmfpm 12883 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  F
( ~~> t `  J
) P )  ->  F  e.  ( X  ^pm  CC ) )
2 toponmax 12663 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
3 cnex 7877 . . . . 5  |-  CC  e.  _V
4 elpmg 6630 . . . . 5  |-  ( ( X  e.  J  /\  CC  e.  _V )  -> 
( F  e.  ( X  ^pm  CC )  <->  ( Fun  F  /\  F  C_  ( CC  X.  X
) ) ) )
52, 3, 4sylancl 410 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  ( F  e.  ( X  ^pm  CC ) 
<->  ( Fun  F  /\  F  C_  ( CC  X.  X ) ) ) )
65adantr 274 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  F
( ~~> t `  J
) P )  -> 
( F  e.  ( X  ^pm  CC )  <->  ( Fun  F  /\  F  C_  ( CC  X.  X
) ) ) )
71, 6mpbid 146 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  F
( ~~> t `  J
) P )  -> 
( Fun  F  /\  F  C_  ( CC  X.  X ) ) )
87simprd 113 1  |-  ( ( J  e.  (TopOn `  X )  /\  F
( ~~> t `  J
) P )  ->  F  C_  ( CC  X.  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 2136   _Vcvv 2726    C_ wss 3116   class class class wbr 3982    X. cxp 4602   Fun wfun 5182   ` cfv 5188  (class class class)co 5842    ^pm cpm 6615   CCcc 7751  TopOnctopon 12648   ~~> tclm 12827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-pm 6617  df-top 12636  df-topon 12649  df-lm 12830
This theorem is referenced by:  lmss  12886
  Copyright terms: Public domain W3C validator