ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lspid Unicode version

Theorem lspid 14101
Description: The span of a subspace is itself. (Contributed by NM, 15-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspid.s  |-  S  =  ( LSubSp `  W )
lspid.n  |-  N  =  ( LSpan `  W )
Assertion
Ref Expression
lspid  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( N `  U )  =  U )

Proof of Theorem lspid
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 eqid 2204 . . . 4  |-  ( Base `  W )  =  (
Base `  W )
2 lspid.s . . . 4  |-  S  =  ( LSubSp `  W )
31, 2lssssg 14064 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  C_  ( Base `  W
) )
4 lspid.n . . . 4  |-  N  =  ( LSpan `  W )
51, 2, 4lspval 14094 . . 3  |-  ( ( W  e.  LMod  /\  U  C_  ( Base `  W
) )  ->  ( N `  U )  =  |^| { t  e.  S  |  U  C_  t } )
63, 5syldan 282 . 2  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( N `  U )  =  |^| { t  e.  S  |  U  C_  t } )
7 intmin 3904 . . 3  |-  ( U  e.  S  ->  |^| { t  e.  S  |  U  C_  t }  =  U )
87adantl 277 . 2  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  |^| { t  e.  S  |  U  C_  t }  =  U )
96, 8eqtrd 2237 1  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( N `  U )  =  U )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1372    e. wcel 2175   {crab 2487    C_ wss 3165   |^|cint 3884   ` cfv 5270   Basecbs 12774   LModclmod 13991   LSubSpclss 14056   LSpanclspn 14090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-cnex 8015  ax-resscn 8016  ax-1re 8018  ax-addrcl 8021
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-5 9097  df-6 9098  df-ndx 12777  df-slot 12778  df-base 12780  df-plusg 12864  df-mulr 12865  df-sca 12867  df-vsca 12868  df-0g 13032  df-mgm 13130  df-sgrp 13176  df-mnd 13191  df-grp 13277  df-lmod 13993  df-lssm 14057  df-lsp 14091
This theorem is referenced by:  lspidm  14105  lspssp  14107  lspsn0  14126
  Copyright terms: Public domain W3C validator