ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lssssg Unicode version

Theorem lssssg 14237
Description: A subspace is a set of vectors. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.)
Hypotheses
Ref Expression
lssss.v  |-  V  =  ( Base `  W
)
lssss.s  |-  S  =  ( LSubSp `  W )
Assertion
Ref Expression
lssssg  |-  ( ( W  e.  X  /\  U  e.  S )  ->  U  C_  V )

Proof of Theorem lssssg
Dummy variables  a  b  j  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2207 . . . 4  |-  (Scalar `  W )  =  (Scalar `  W )
2 eqid 2207 . . . 4  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
3 lssss.v . . . 4  |-  V  =  ( Base `  W
)
4 eqid 2207 . . . 4  |-  ( +g  `  W )  =  ( +g  `  W )
5 eqid 2207 . . . 4  |-  ( .s
`  W )  =  ( .s `  W
)
6 lssss.s . . . 4  |-  S  =  ( LSubSp `  W )
71, 2, 3, 4, 5, 6islssmg 14235 . . 3  |-  ( W  e.  X  ->  ( U  e.  S  <->  ( U  C_  V  /\  E. j 
j  e.  U  /\  A. x  e.  ( Base `  (Scalar `  W )
) A. a  e.  U  A. b  e.  U  ( ( x ( .s `  W
) a ) ( +g  `  W ) b )  e.  U
) ) )
87biimpa 296 . 2  |-  ( ( W  e.  X  /\  U  e.  S )  ->  ( U  C_  V  /\  E. j  j  e.  U  /\  A. x  e.  ( Base `  (Scalar `  W ) ) A. a  e.  U  A. b  e.  U  (
( x ( .s
`  W ) a ) ( +g  `  W
) b )  e.  U ) )
98simp1d 1012 1  |-  ( ( W  e.  X  /\  U  e.  S )  ->  U  C_  V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373   E.wex 1516    e. wcel 2178   A.wral 2486    C_ wss 3174   ` cfv 5290  (class class class)co 5967   Basecbs 12947   +g cplusg 13024  Scalarcsca 13027   .scvsca 13028   LSubSpclss 14229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-ov 5970  df-inn 9072  df-ndx 12950  df-slot 12951  df-base 12953  df-lssm 14230
This theorem is referenced by:  lsselg  14238  lssuni  14240  lsssubg  14254  islss3  14256  lsslss  14258  lssintclm  14261  lspid  14274  lspssv  14275  lspssp  14280  lsslsp  14306  lidlss  14353
  Copyright terms: Public domain W3C validator