ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lssssg Unicode version

Theorem lssssg 13452
Description: A subspace is a set of vectors. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.)
Hypotheses
Ref Expression
lssss.v  |-  V  =  ( Base `  W
)
lssss.s  |-  S  =  ( LSubSp `  W )
Assertion
Ref Expression
lssssg  |-  ( ( W  e.  X  /\  U  e.  S )  ->  U  C_  V )

Proof of Theorem lssssg
Dummy variables  a  b  j  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2177 . . . 4  |-  (Scalar `  W )  =  (Scalar `  W )
2 eqid 2177 . . . 4  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
3 lssss.v . . . 4  |-  V  =  ( Base `  W
)
4 eqid 2177 . . . 4  |-  ( +g  `  W )  =  ( +g  `  W )
5 eqid 2177 . . . 4  |-  ( .s
`  W )  =  ( .s `  W
)
6 lssss.s . . . 4  |-  S  =  ( LSubSp `  W )
71, 2, 3, 4, 5, 6islssm 13450 . . 3  |-  ( W  e.  X  ->  ( U  e.  S  <->  ( U  C_  V  /\  E. j 
j  e.  U  /\  A. x  e.  ( Base `  (Scalar `  W )
) A. a  e.  U  A. b  e.  U  ( ( x ( .s `  W
) a ) ( +g  `  W ) b )  e.  U
) ) )
87biimpa 296 . 2  |-  ( ( W  e.  X  /\  U  e.  S )  ->  ( U  C_  V  /\  E. j  j  e.  U  /\  A. x  e.  ( Base `  (Scalar `  W ) ) A. a  e.  U  A. b  e.  U  (
( x ( .s
`  W ) a ) ( +g  `  W
) b )  e.  U ) )
98simp1d 1009 1  |-  ( ( W  e.  X  /\  U  e.  S )  ->  U  C_  V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353   E.wex 1492    e. wcel 2148   A.wral 2455    C_ wss 3131   ` cfv 5218  (class class class)co 5877   Basecbs 12464   +g cplusg 12538  Scalarcsca 12541   .scvsca 12542   LSubSpclss 13447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-ov 5880  df-inn 8922  df-ndx 12467  df-slot 12468  df-base 12470  df-lssm 13448
This theorem is referenced by:  lsselg  13453  lssuni  13455  lsssubg  13469  islss3  13471  lsslss  13473  lssintclm  13476  lspid  13488  lspssv  13489  lspssp  13494  lsslsp  13520
  Copyright terms: Public domain W3C validator