ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lssssg Unicode version

Theorem lssssg 14122
Description: A subspace is a set of vectors. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.)
Hypotheses
Ref Expression
lssss.v  |-  V  =  ( Base `  W
)
lssss.s  |-  S  =  ( LSubSp `  W )
Assertion
Ref Expression
lssssg  |-  ( ( W  e.  X  /\  U  e.  S )  ->  U  C_  V )

Proof of Theorem lssssg
Dummy variables  a  b  j  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2205 . . . 4  |-  (Scalar `  W )  =  (Scalar `  W )
2 eqid 2205 . . . 4  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
3 lssss.v . . . 4  |-  V  =  ( Base `  W
)
4 eqid 2205 . . . 4  |-  ( +g  `  W )  =  ( +g  `  W )
5 eqid 2205 . . . 4  |-  ( .s
`  W )  =  ( .s `  W
)
6 lssss.s . . . 4  |-  S  =  ( LSubSp `  W )
71, 2, 3, 4, 5, 6islssmg 14120 . . 3  |-  ( W  e.  X  ->  ( U  e.  S  <->  ( U  C_  V  /\  E. j 
j  e.  U  /\  A. x  e.  ( Base `  (Scalar `  W )
) A. a  e.  U  A. b  e.  U  ( ( x ( .s `  W
) a ) ( +g  `  W ) b )  e.  U
) ) )
87biimpa 296 . 2  |-  ( ( W  e.  X  /\  U  e.  S )  ->  ( U  C_  V  /\  E. j  j  e.  U  /\  A. x  e.  ( Base `  (Scalar `  W ) ) A. a  e.  U  A. b  e.  U  (
( x ( .s
`  W ) a ) ( +g  `  W
) b )  e.  U ) )
98simp1d 1012 1  |-  ( ( W  e.  X  /\  U  e.  S )  ->  U  C_  V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373   E.wex 1515    e. wcel 2176   A.wral 2484    C_ wss 3166   ` cfv 5271  (class class class)co 5944   Basecbs 12832   +g cplusg 12909  Scalarcsca 12912   .scvsca 12913   LSubSpclss 14114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279  df-ov 5947  df-inn 9037  df-ndx 12835  df-slot 12836  df-base 12838  df-lssm 14115
This theorem is referenced by:  lsselg  14123  lssuni  14125  lsssubg  14139  islss3  14141  lsslss  14143  lssintclm  14146  lspid  14159  lspssv  14160  lspssp  14165  lsslsp  14191  lidlss  14238
  Copyright terms: Public domain W3C validator