| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnmap | Unicode version | ||
| Description: Set exponentiation has a universal domain. (Contributed by NM, 8-Dec-2003.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| fnmap |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-map 6787 |
. 2
| |
| 2 | vex 2802 |
. . 3
| |
| 3 | vex 2802 |
. . 3
| |
| 4 | mapex 6791 |
. . 3
| |
| 5 | 2, 3, 4 | mp2an 426 |
. 2
|
| 6 | 1, 5 | fnmpoi 6339 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-fv 5322 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-map 6787 |
| This theorem is referenced by: mapsnen 6954 map1 6955 mapen 6995 mapdom1g 6996 mapxpen 6997 xpmapenlem 6998 hashfacen 11045 wrdexg 11069 omctfn 13000 prdsvallem 13291 prdsval 13292 ismhm 13480 mhmex 13481 rhmex 14106 fnpsr 14616 psrelbas 14624 psrplusgg 14627 psraddcl 14629 psr0cl 14630 psr0lid 14631 psrnegcl 14632 psrlinv 14633 psrgrp 14634 psr1clfi 14637 mplsubgfilemcl 14648 cnfval 14853 cnpfval 14854 cnpval 14857 ismet 15003 isxmet 15004 xmetunirn 15017 plyval 15391 2omapen 16291 pw1mapen 16293 |
| Copyright terms: Public domain | W3C validator |