ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnmap Unicode version

Theorem fnmap 6515
Description: Set exponentiation has a universal domain. (Contributed by NM, 8-Dec-2003.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
fnmap  |-  ^m  Fn  ( _V  X.  _V )

Proof of Theorem fnmap
Dummy variables  x  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-map 6510 . 2  |-  ^m  =  ( x  e.  _V ,  y  e.  _V  |->  { f  |  f : y --> x }
)
2 vex 2661 . . 3  |-  y  e. 
_V
3 vex 2661 . . 3  |-  x  e. 
_V
4 mapex 6514 . . 3  |-  ( ( y  e.  _V  /\  x  e.  _V )  ->  { f  |  f : y --> x }  e.  _V )
52, 3, 4mp2an 420 . 2  |-  { f  |  f : y --> x }  e.  _V
61, 5fnmpoi 6068 1  |-  ^m  Fn  ( _V  X.  _V )
Colors of variables: wff set class
Syntax hints:    e. wcel 1463   {cab 2101   _Vcvv 2658    X. cxp 4505    Fn wfn 5086   -->wf 5087    ^m cmap 6508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-un 4323
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rex 2397  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-fv 5099  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-map 6510
This theorem is referenced by:  mapsnen  6671  map1  6672  mapen  6706  mapdom1g  6707  mapxpen  6708  xpmapenlem  6709  hashfacen  10530  cnfval  12269  cnpfval  12270  cnpval  12273  ismet  12419  isxmet  12420  xmetunirn  12433
  Copyright terms: Public domain W3C validator