| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnmap | Unicode version | ||
| Description: Set exponentiation has a universal domain. (Contributed by NM, 8-Dec-2003.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| fnmap |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-map 6718 |
. 2
| |
| 2 | vex 2766 |
. . 3
| |
| 3 | vex 2766 |
. . 3
| |
| 4 | mapex 6722 |
. . 3
| |
| 5 | 2, 3, 4 | mp2an 426 |
. 2
|
| 6 | 1, 5 | fnmpoi 6270 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-map 6718 |
| This theorem is referenced by: mapsnen 6879 map1 6880 mapen 6916 mapdom1g 6917 mapxpen 6918 xpmapenlem 6919 hashfacen 10945 wrdexg 10963 omctfn 12685 prdsvallem 12974 prdsval 12975 ismhm 13163 mhmex 13164 rhmex 13789 fnpsr 14297 psrelbas 14304 psrplusgg 14306 psraddcl 14308 psr0cl 14309 psr0lid 14310 psrnegcl 14311 psrlinv 14312 psrgrp 14313 psr1clfi 14316 cnfval 14514 cnpfval 14515 cnpval 14518 ismet 14664 isxmet 14665 xmetunirn 14678 plyval 15052 2omapen 15727 |
| Copyright terms: Public domain | W3C validator |