Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fnmap | Unicode version |
Description: Set exponentiation has a universal domain. (Contributed by NM, 8-Dec-2003.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
fnmap |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-map 6625 | . 2 | |
2 | vex 2733 | . . 3 | |
3 | vex 2733 | . . 3 | |
4 | mapex 6629 | . . 3 | |
5 | 2, 3, 4 | mp2an 424 | . 2 |
6 | 1, 5 | fnmpoi 6181 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2141 cab 2156 cvv 2730 cxp 4607 wfn 5191 wf 5192 cmap 6623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-fv 5204 df-oprab 5855 df-mpo 5856 df-1st 6117 df-2nd 6118 df-map 6625 |
This theorem is referenced by: mapsnen 6786 map1 6787 mapen 6821 mapdom1g 6822 mapxpen 6823 xpmapenlem 6824 hashfacen 10760 omctfn 12387 ismhm 12674 cnfval 12949 cnpfval 12950 cnpval 12953 ismet 13099 isxmet 13100 xmetunirn 13113 |
Copyright terms: Public domain | W3C validator |