ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnmap Unicode version

Theorem fnmap 6428
Description: Set exponentiation has a universal domain. (Contributed by NM, 8-Dec-2003.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
fnmap  |-  ^m  Fn  ( _V  X.  _V )

Proof of Theorem fnmap
Dummy variables  x  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-map 6423 . 2  |-  ^m  =  ( x  e.  _V ,  y  e.  _V  |->  { f  |  f : y --> x }
)
2 vex 2625 . . 3  |-  y  e. 
_V
3 vex 2625 . . 3  |-  x  e. 
_V
4 mapex 6427 . . 3  |-  ( ( y  e.  _V  /\  x  e.  _V )  ->  { f  |  f : y --> x }  e.  _V )
52, 3, 4mp2an 418 . 2  |-  { f  |  f : y --> x }  e.  _V
61, 5fnmpt2i 5990 1  |-  ^m  Fn  ( _V  X.  _V )
Colors of variables: wff set class
Syntax hints:    e. wcel 1439   {cab 2075   _Vcvv 2622    X. cxp 4452    Fn wfn 5025   -->wf 5026    ^m cmap 6421
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3965  ax-pow 4017  ax-pr 4047  ax-un 4271
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-rab 2369  df-v 2624  df-sbc 2844  df-csb 2937  df-un 3006  df-in 3008  df-ss 3015  df-pw 3437  df-sn 3458  df-pr 3459  df-op 3461  df-uni 3662  df-iun 3740  df-br 3854  df-opab 3908  df-mpt 3909  df-id 4131  df-xp 4460  df-rel 4461  df-cnv 4462  df-co 4463  df-dm 4464  df-rn 4465  df-res 4466  df-ima 4467  df-iota 4995  df-fun 5032  df-fn 5033  df-f 5034  df-fv 5038  df-oprab 5672  df-mpt2 5673  df-1st 5927  df-2nd 5928  df-map 6423
This theorem is referenced by:  mapsnen  6584  map1  6585  mapen  6618  mapdom1g  6619  mapxpen  6620  xpmapenlem  6621  hashfacen  10304
  Copyright terms: Public domain W3C validator