| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > amgm2 | Unicode version | ||
| Description: Arithmetic-geometric mean
inequality for |
| Ref | Expression |
|---|---|
| amgm2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 9078 |
. . . . . 6
| |
| 2 | simpll 527 |
. . . . . . . . 9
| |
| 3 | simprl 529 |
. . . . . . . . 9
| |
| 4 | remulcl 8024 |
. . . . . . . . 9
| |
| 5 | 2, 3, 4 | syl2anc 411 |
. . . . . . . 8
|
| 6 | mulge0 8663 |
. . . . . . . 8
| |
| 7 | resqrtcl 11211 |
. . . . . . . 8
| |
| 8 | 5, 6, 7 | syl2anc 411 |
. . . . . . 7
|
| 9 | 8 | recnd 8072 |
. . . . . 6
|
| 10 | sqmul 10710 |
. . . . . 6
| |
| 11 | 1, 9, 10 | sylancr 414 |
. . . . 5
|
| 12 | sq2 10744 |
. . . . . . 7
| |
| 13 | 12 | oveq1i 5935 |
. . . . . 6
|
| 14 | resqrtth 11213 |
. . . . . . . 8
| |
| 15 | 5, 6, 14 | syl2anc 411 |
. . . . . . 7
|
| 16 | 15 | oveq2d 5941 |
. . . . . 6
|
| 17 | 13, 16 | eqtrid 2241 |
. . . . 5
|
| 18 | 11, 17 | eqtrd 2229 |
. . . 4
|
| 19 | 2, 3 | resubcld 8424 |
. . . . . . 7
|
| 20 | 19 | sqge0d 10809 |
. . . . . 6
|
| 21 | 2 | recnd 8072 |
. . . . . . . . . 10
|
| 22 | 3 | recnd 8072 |
. . . . . . . . . 10
|
| 23 | binom2 10760 |
. . . . . . . . . 10
| |
| 24 | 21, 22, 23 | syl2anc 411 |
. . . . . . . . 9
|
| 25 | binom2sub 10762 |
. . . . . . . . . 10
| |
| 26 | 21, 22, 25 | syl2anc 411 |
. . . . . . . . 9
|
| 27 | 24, 26 | oveq12d 5943 |
. . . . . . . 8
|
| 28 | 2 | resqcld 10808 |
. . . . . . . . . . 11
|
| 29 | 2re 9077 |
. . . . . . . . . . . 12
| |
| 30 | remulcl 8024 |
. . . . . . . . . . . 12
| |
| 31 | 29, 5, 30 | sylancr 414 |
. . . . . . . . . . 11
|
| 32 | 28, 31 | readdcld 8073 |
. . . . . . . . . 10
|
| 33 | 32 | recnd 8072 |
. . . . . . . . 9
|
| 34 | 28, 31 | resubcld 8424 |
. . . . . . . . . 10
|
| 35 | 34 | recnd 8072 |
. . . . . . . . 9
|
| 36 | 3 | resqcld 10808 |
. . . . . . . . . 10
|
| 37 | 36 | recnd 8072 |
. . . . . . . . 9
|
| 38 | 33, 35, 37 | pnpcan2d 8392 |
. . . . . . . 8
|
| 39 | 31 | recnd 8072 |
. . . . . . . . . 10
|
| 40 | 39 | 2timesd 9251 |
. . . . . . . . 9
|
| 41 | 2t2e4 9162 |
. . . . . . . . . . 11
| |
| 42 | 41 | oveq1i 5935 |
. . . . . . . . . 10
|
| 43 | 2cnd 9080 |
. . . . . . . . . . 11
| |
| 44 | 5 | recnd 8072 |
. . . . . . . . . . 11
|
| 45 | 43, 43, 44 | mulassd 8067 |
. . . . . . . . . 10
|
| 46 | 42, 45 | eqtr3id 2243 |
. . . . . . . . 9
|
| 47 | 28 | recnd 8072 |
. . . . . . . . . 10
|
| 48 | 47, 39, 39 | pnncand 8393 |
. . . . . . . . 9
|
| 49 | 40, 46, 48 | 3eqtr4rd 2240 |
. . . . . . . 8
|
| 50 | 27, 38, 49 | 3eqtrd 2233 |
. . . . . . 7
|
| 51 | 2, 3 | readdcld 8073 |
. . . . . . . . . 10
|
| 52 | 51 | resqcld 10808 |
. . . . . . . . 9
|
| 53 | 52 | recnd 8072 |
. . . . . . . 8
|
| 54 | 19 | resqcld 10808 |
. . . . . . . . 9
|
| 55 | 54 | recnd 8072 |
. . . . . . . 8
|
| 56 | 4re 9084 |
. . . . . . . . . 10
| |
| 57 | remulcl 8024 |
. . . . . . . . . 10
| |
| 58 | 56, 5, 57 | sylancr 414 |
. . . . . . . . 9
|
| 59 | 58 | recnd 8072 |
. . . . . . . 8
|
| 60 | subsub23 8248 |
. . . . . . . 8
| |
| 61 | 53, 55, 59, 60 | syl3anc 1249 |
. . . . . . 7
|
| 62 | 50, 61 | mpbid 147 |
. . . . . 6
|
| 63 | 20, 62 | breqtrrd 4062 |
. . . . 5
|
| 64 | 52, 58 | subge0d 8579 |
. . . . 5
|
| 65 | 63, 64 | mpbid 147 |
. . . 4
|
| 66 | 18, 65 | eqbrtrd 4056 |
. . 3
|
| 67 | remulcl 8024 |
. . . . 5
| |
| 68 | 29, 8, 67 | sylancr 414 |
. . . 4
|
| 69 | sqrtge0 11215 |
. . . . . 6
| |
| 70 | 5, 6, 69 | syl2anc 411 |
. . . . 5
|
| 71 | 0le2 9097 |
. . . . . 6
| |
| 72 | mulge0 8663 |
. . . . . 6
| |
| 73 | 29, 71, 72 | mpanl12 436 |
. . . . 5
|
| 74 | 8, 70, 73 | syl2anc 411 |
. . . 4
|
| 75 | addge0 8495 |
. . . . 5
| |
| 76 | 75 | an4s 588 |
. . . 4
|
| 77 | 68, 51, 74, 76 | le2sqd 10814 |
. . 3
|
| 78 | 66, 77 | mpbird 167 |
. 2
|
| 79 | 2pos 9098 |
. . . . 5
| |
| 80 | 29, 79 | pm3.2i 272 |
. . . 4
|
| 81 | 80 | a1i 9 |
. . 3
|
| 82 | lemuldiv2 8926 |
. . 3
| |
| 83 | 8, 51, 81, 82 | syl3anc 1249 |
. 2
|
| 84 | 78, 83 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 ax-caucvg 8016 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-n0 9267 df-z 9344 df-uz 9619 df-rp 9746 df-seqfrec 10557 df-exp 10648 df-rsqrt 11180 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |