ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  amgm2 Unicode version

Theorem amgm2 11624
Description: Arithmetic-geometric mean inequality for  n  =  2. (Contributed by Mario Carneiro, 2-Jul-2014.)
Assertion
Ref Expression
amgm2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( sqr `  ( A  x.  B
) )  <_  (
( A  +  B
)  /  2 ) )

Proof of Theorem amgm2
StepHypRef Expression
1 2cn 9177 . . . . . 6  |-  2  e.  CC
2 simpll 527 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  A  e.  RR )
3 simprl 529 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  B  e.  RR )
4 remulcl 8123 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B
)  e.  RR )
52, 3, 4syl2anc 411 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( A  x.  B )  e.  RR )
6 mulge0 8762 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  0  <_  ( A  x.  B ) )
7 resqrtcl 11535 . . . . . . . 8  |-  ( ( ( A  x.  B
)  e.  RR  /\  0  <_  ( A  x.  B ) )  -> 
( sqr `  ( A  x.  B )
)  e.  RR )
85, 6, 7syl2anc 411 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( sqr `  ( A  x.  B
) )  e.  RR )
98recnd 8171 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( sqr `  ( A  x.  B
) )  e.  CC )
10 sqmul 10818 . . . . . 6  |-  ( ( 2  e.  CC  /\  ( sqr `  ( A  x.  B ) )  e.  CC )  -> 
( ( 2  x.  ( sqr `  ( A  x.  B )
) ) ^ 2 )  =  ( ( 2 ^ 2 )  x.  ( ( sqr `  ( A  x.  B
) ) ^ 2 ) ) )
111, 9, 10sylancr 414 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
2  x.  ( sqr `  ( A  x.  B
) ) ) ^
2 )  =  ( ( 2 ^ 2 )  x.  ( ( sqr `  ( A  x.  B ) ) ^ 2 ) ) )
12 sq2 10852 . . . . . . 7  |-  ( 2 ^ 2 )  =  4
1312oveq1i 6010 . . . . . 6  |-  ( ( 2 ^ 2 )  x.  ( ( sqr `  ( A  x.  B
) ) ^ 2 ) )  =  ( 4  x.  ( ( sqr `  ( A  x.  B ) ) ^ 2 ) )
14 resqrtth 11537 . . . . . . . 8  |-  ( ( ( A  x.  B
)  e.  RR  /\  0  <_  ( A  x.  B ) )  -> 
( ( sqr `  ( A  x.  B )
) ^ 2 )  =  ( A  x.  B ) )
155, 6, 14syl2anc 411 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( sqr `  ( A  x.  B ) ) ^
2 )  =  ( A  x.  B ) )
1615oveq2d 6016 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( 4  x.  ( ( sqr `  ( A  x.  B
) ) ^ 2 ) )  =  ( 4  x.  ( A  x.  B ) ) )
1713, 16eqtrid 2274 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
2 ^ 2 )  x.  ( ( sqr `  ( A  x.  B
) ) ^ 2 ) )  =  ( 4  x.  ( A  x.  B ) ) )
1811, 17eqtrd 2262 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
2  x.  ( sqr `  ( A  x.  B
) ) ) ^
2 )  =  ( 4  x.  ( A  x.  B ) ) )
192, 3resubcld 8523 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( A  -  B )  e.  RR )
2019sqge0d 10917 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  0  <_  ( ( A  -  B
) ^ 2 ) )
212recnd 8171 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  A  e.  CC )
223recnd 8171 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  B  e.  CC )
23 binom2 10868 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 2 )  =  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( B ^
2 ) ) )
2421, 22, 23syl2anc 411 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  +  B ) ^ 2 )  =  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B )
) )  +  ( B ^ 2 ) ) )
25 binom2sub 10870 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  -  B ) ^ 2 )  =  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  B ) ) )  +  ( B ^
2 ) ) )
2621, 22, 25syl2anc 411 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  -  B ) ^ 2 )  =  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  B )
) )  +  ( B ^ 2 ) ) )
2724, 26oveq12d 6018 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
( A  +  B
) ^ 2 )  -  ( ( A  -  B ) ^
2 ) )  =  ( ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B
) ) )  +  ( B ^ 2 ) )  -  (
( ( A ^
2 )  -  (
2  x.  ( A  x.  B ) ) )  +  ( B ^ 2 ) ) ) )
282resqcld 10916 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( A ^ 2 )  e.  RR )
29 2re 9176 . . . . . . . . . . . 12  |-  2  e.  RR
30 remulcl 8123 . . . . . . . . . . . 12  |-  ( ( 2  e.  RR  /\  ( A  x.  B
)  e.  RR )  ->  ( 2  x.  ( A  x.  B
) )  e.  RR )
3129, 5, 30sylancr 414 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( 2  x.  ( A  x.  B ) )  e.  RR )
3228, 31readdcld 8172 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B )
) )  e.  RR )
3332recnd 8171 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B )
) )  e.  CC )
3428, 31resubcld 8523 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  B )
) )  e.  RR )
3534recnd 8171 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  B )
) )  e.  CC )
363resqcld 10916 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( B ^ 2 )  e.  RR )
3736recnd 8171 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( B ^ 2 )  e.  CC )
3833, 35, 37pnpcan2d 8491 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
( ( A ^
2 )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( B ^ 2 ) )  -  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  B
) ) )  +  ( B ^ 2 ) ) )  =  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B )
) )  -  (
( A ^ 2 )  -  ( 2  x.  ( A  x.  B ) ) ) ) )
3931recnd 8171 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( 2  x.  ( A  x.  B ) )  e.  CC )
40392timesd 9350 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( 2  x.  ( 2  x.  ( A  x.  B
) ) )  =  ( ( 2  x.  ( A  x.  B
) )  +  ( 2  x.  ( A  x.  B ) ) ) )
41 2t2e4 9261 . . . . . . . . . . 11  |-  ( 2  x.  2 )  =  4
4241oveq1i 6010 . . . . . . . . . 10  |-  ( ( 2  x.  2 )  x.  ( A  x.  B ) )  =  ( 4  x.  ( A  x.  B )
)
43 2cnd 9179 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  2  e.  CC )
445recnd 8171 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( A  x.  B )  e.  CC )
4543, 43, 44mulassd 8166 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
2  x.  2 )  x.  ( A  x.  B ) )  =  ( 2  x.  (
2  x.  ( A  x.  B ) ) ) )
4642, 45eqtr3id 2276 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( 4  x.  ( A  x.  B ) )  =  ( 2  x.  (
2  x.  ( A  x.  B ) ) ) )
4728recnd 8171 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( A ^ 2 )  e.  CC )
4847, 39, 39pnncand 8492 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
( A ^ 2 )  +  ( 2  x.  ( A  x.  B ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  B )
) ) )  =  ( ( 2  x.  ( A  x.  B
) )  +  ( 2  x.  ( A  x.  B ) ) ) )
4940, 46, 483eqtr4rd 2273 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
( A ^ 2 )  +  ( 2  x.  ( A  x.  B ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  B )
) ) )  =  ( 4  x.  ( A  x.  B )
) )
5027, 38, 493eqtrd 2266 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
( A  +  B
) ^ 2 )  -  ( ( A  -  B ) ^
2 ) )  =  ( 4  x.  ( A  x.  B )
) )
512, 3readdcld 8172 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( A  +  B )  e.  RR )
5251resqcld 10916 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  +  B ) ^ 2 )  e.  RR )
5352recnd 8171 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  +  B ) ^ 2 )  e.  CC )
5419resqcld 10916 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  -  B ) ^ 2 )  e.  RR )
5554recnd 8171 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  -  B ) ^ 2 )  e.  CC )
56 4re 9183 . . . . . . . . . 10  |-  4  e.  RR
57 remulcl 8123 . . . . . . . . . 10  |-  ( ( 4  e.  RR  /\  ( A  x.  B
)  e.  RR )  ->  ( 4  x.  ( A  x.  B
) )  e.  RR )
5856, 5, 57sylancr 414 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( 4  x.  ( A  x.  B ) )  e.  RR )
5958recnd 8171 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( 4  x.  ( A  x.  B ) )  e.  CC )
60 subsub23 8347 . . . . . . . 8  |-  ( ( ( ( A  +  B ) ^ 2 )  e.  CC  /\  ( ( A  -  B ) ^ 2 )  e.  CC  /\  ( 4  x.  ( A  x.  B )
)  e.  CC )  ->  ( ( ( ( A  +  B
) ^ 2 )  -  ( ( A  -  B ) ^
2 ) )  =  ( 4  x.  ( A  x.  B )
)  <->  ( ( ( A  +  B ) ^ 2 )  -  ( 4  x.  ( A  x.  B )
) )  =  ( ( A  -  B
) ^ 2 ) ) )
6153, 55, 59, 60syl3anc 1271 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
( ( A  +  B ) ^ 2 )  -  ( ( A  -  B ) ^ 2 ) )  =  ( 4  x.  ( A  x.  B
) )  <->  ( (
( A  +  B
) ^ 2 )  -  ( 4  x.  ( A  x.  B
) ) )  =  ( ( A  -  B ) ^ 2 ) ) )
6250, 61mpbid 147 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
( A  +  B
) ^ 2 )  -  ( 4  x.  ( A  x.  B
) ) )  =  ( ( A  -  B ) ^ 2 ) )
6320, 62breqtrrd 4110 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  0  <_  ( ( ( A  +  B ) ^ 2 )  -  ( 4  x.  ( A  x.  B ) ) ) )
6452, 58subge0d 8678 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( 0  <_  ( ( ( A  +  B ) ^ 2 )  -  ( 4  x.  ( A  x.  B )
) )  <->  ( 4  x.  ( A  x.  B ) )  <_ 
( ( A  +  B ) ^ 2 ) ) )
6563, 64mpbid 147 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( 4  x.  ( A  x.  B ) )  <_ 
( ( A  +  B ) ^ 2 ) )
6618, 65eqbrtrd 4104 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
2  x.  ( sqr `  ( A  x.  B
) ) ) ^
2 )  <_  (
( A  +  B
) ^ 2 ) )
67 remulcl 8123 . . . . 5  |-  ( ( 2  e.  RR  /\  ( sqr `  ( A  x.  B ) )  e.  RR )  -> 
( 2  x.  ( sqr `  ( A  x.  B ) ) )  e.  RR )
6829, 8, 67sylancr 414 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( 2  x.  ( sqr `  ( A  x.  B )
) )  e.  RR )
69 sqrtge0 11539 . . . . . 6  |-  ( ( ( A  x.  B
)  e.  RR  /\  0  <_  ( A  x.  B ) )  -> 
0  <_  ( sqr `  ( A  x.  B
) ) )
705, 6, 69syl2anc 411 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  0  <_  ( sqr `  ( A  x.  B ) ) )
71 0le2 9196 . . . . . 6  |-  0  <_  2
72 mulge0 8762 . . . . . 6  |-  ( ( ( 2  e.  RR  /\  0  <_  2 )  /\  ( ( sqr `  ( A  x.  B
) )  e.  RR  /\  0  <_  ( sqr `  ( A  x.  B
) ) ) )  ->  0  <_  (
2  x.  ( sqr `  ( A  x.  B
) ) ) )
7329, 71, 72mpanl12 436 . . . . 5  |-  ( ( ( sqr `  ( A  x.  B )
)  e.  RR  /\  0  <_  ( sqr `  ( A  x.  B )
) )  ->  0  <_  ( 2  x.  ( sqr `  ( A  x.  B ) ) ) )
748, 70, 73syl2anc 411 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  0  <_  ( 2  x.  ( sqr `  ( A  x.  B
) ) ) )
75 addge0 8594 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <_  B
) )  ->  0  <_  ( A  +  B
) )
7675an4s 590 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  0  <_  ( A  +  B ) )
7768, 51, 74, 76le2sqd 10922 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
2  x.  ( sqr `  ( A  x.  B
) ) )  <_ 
( A  +  B
)  <->  ( ( 2  x.  ( sqr `  ( A  x.  B )
) ) ^ 2 )  <_  ( ( A  +  B ) ^ 2 ) ) )
7866, 77mpbird 167 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( 2  x.  ( sqr `  ( A  x.  B )
) )  <_  ( A  +  B )
)
79 2pos 9197 . . . . 5  |-  0  <  2
8029, 79pm3.2i 272 . . . 4  |-  ( 2  e.  RR  /\  0  <  2 )
8180a1i 9 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( 2  e.  RR  /\  0  <  2 ) )
82 lemuldiv2 9025 . . 3  |-  ( ( ( sqr `  ( A  x.  B )
)  e.  RR  /\  ( A  +  B
)  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( (
2  x.  ( sqr `  ( A  x.  B
) ) )  <_ 
( A  +  B
)  <->  ( sqr `  ( A  x.  B )
)  <_  ( ( A  +  B )  /  2 ) ) )
838, 51, 81, 82syl3anc 1271 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
2  x.  ( sqr `  ( A  x.  B
) ) )  <_ 
( A  +  B
)  <->  ( sqr `  ( A  x.  B )
)  <_  ( ( A  +  B )  /  2 ) ) )
8478, 83mpbid 147 1  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( sqr `  ( A  x.  B
) )  <_  (
( A  +  B
)  /  2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   class class class wbr 4082   ` cfv 5317  (class class class)co 6000   CCcc 7993   RRcr 7994   0cc0 7995    + caddc 7998    x. cmul 8000    < clt 8177    <_ cle 8178    - cmin 8313    / cdiv 8815   2c2 9157   4c4 9159   ^cexp 10755   sqrcsqrt 11502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-rp 9846  df-seqfrec 10665  df-exp 10756  df-rsqrt 11504
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator