ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  amgm2 Unicode version

Theorem amgm2 10922
Description: Arithmetic-geometric mean inequality for  n  =  2. (Contributed by Mario Carneiro, 2-Jul-2014.)
Assertion
Ref Expression
amgm2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( sqr `  ( A  x.  B
) )  <_  (
( A  +  B
)  /  2 ) )

Proof of Theorem amgm2
StepHypRef Expression
1 2cn 8815 . . . . . 6  |-  2  e.  CC
2 simpll 519 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  A  e.  RR )
3 simprl 521 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  B  e.  RR )
4 remulcl 7772 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B
)  e.  RR )
52, 3, 4syl2anc 409 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( A  x.  B )  e.  RR )
6 mulge0 8405 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  0  <_  ( A  x.  B ) )
7 resqrtcl 10833 . . . . . . . 8  |-  ( ( ( A  x.  B
)  e.  RR  /\  0  <_  ( A  x.  B ) )  -> 
( sqr `  ( A  x.  B )
)  e.  RR )
85, 6, 7syl2anc 409 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( sqr `  ( A  x.  B
) )  e.  RR )
98recnd 7818 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( sqr `  ( A  x.  B
) )  e.  CC )
10 sqmul 10386 . . . . . 6  |-  ( ( 2  e.  CC  /\  ( sqr `  ( A  x.  B ) )  e.  CC )  -> 
( ( 2  x.  ( sqr `  ( A  x.  B )
) ) ^ 2 )  =  ( ( 2 ^ 2 )  x.  ( ( sqr `  ( A  x.  B
) ) ^ 2 ) ) )
111, 9, 10sylancr 411 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
2  x.  ( sqr `  ( A  x.  B
) ) ) ^
2 )  =  ( ( 2 ^ 2 )  x.  ( ( sqr `  ( A  x.  B ) ) ^ 2 ) ) )
12 sq2 10419 . . . . . . 7  |-  ( 2 ^ 2 )  =  4
1312oveq1i 5792 . . . . . 6  |-  ( ( 2 ^ 2 )  x.  ( ( sqr `  ( A  x.  B
) ) ^ 2 ) )  =  ( 4  x.  ( ( sqr `  ( A  x.  B ) ) ^ 2 ) )
14 resqrtth 10835 . . . . . . . 8  |-  ( ( ( A  x.  B
)  e.  RR  /\  0  <_  ( A  x.  B ) )  -> 
( ( sqr `  ( A  x.  B )
) ^ 2 )  =  ( A  x.  B ) )
155, 6, 14syl2anc 409 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( sqr `  ( A  x.  B ) ) ^
2 )  =  ( A  x.  B ) )
1615oveq2d 5798 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( 4  x.  ( ( sqr `  ( A  x.  B
) ) ^ 2 ) )  =  ( 4  x.  ( A  x.  B ) ) )
1713, 16syl5eq 2185 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
2 ^ 2 )  x.  ( ( sqr `  ( A  x.  B
) ) ^ 2 ) )  =  ( 4  x.  ( A  x.  B ) ) )
1811, 17eqtrd 2173 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
2  x.  ( sqr `  ( A  x.  B
) ) ) ^
2 )  =  ( 4  x.  ( A  x.  B ) ) )
192, 3resubcld 8167 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( A  -  B )  e.  RR )
2019sqge0d 10482 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  0  <_  ( ( A  -  B
) ^ 2 ) )
212recnd 7818 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  A  e.  CC )
223recnd 7818 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  B  e.  CC )
23 binom2 10434 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 2 )  =  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( B ^
2 ) ) )
2421, 22, 23syl2anc 409 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  +  B ) ^ 2 )  =  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B )
) )  +  ( B ^ 2 ) ) )
25 binom2sub 10436 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  -  B ) ^ 2 )  =  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  B ) ) )  +  ( B ^
2 ) ) )
2621, 22, 25syl2anc 409 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  -  B ) ^ 2 )  =  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  B )
) )  +  ( B ^ 2 ) ) )
2724, 26oveq12d 5800 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
( A  +  B
) ^ 2 )  -  ( ( A  -  B ) ^
2 ) )  =  ( ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B
) ) )  +  ( B ^ 2 ) )  -  (
( ( A ^
2 )  -  (
2  x.  ( A  x.  B ) ) )  +  ( B ^ 2 ) ) ) )
282resqcld 10481 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( A ^ 2 )  e.  RR )
29 2re 8814 . . . . . . . . . . . 12  |-  2  e.  RR
30 remulcl 7772 . . . . . . . . . . . 12  |-  ( ( 2  e.  RR  /\  ( A  x.  B
)  e.  RR )  ->  ( 2  x.  ( A  x.  B
) )  e.  RR )
3129, 5, 30sylancr 411 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( 2  x.  ( A  x.  B ) )  e.  RR )
3228, 31readdcld 7819 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B )
) )  e.  RR )
3332recnd 7818 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B )
) )  e.  CC )
3428, 31resubcld 8167 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  B )
) )  e.  RR )
3534recnd 7818 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  B )
) )  e.  CC )
363resqcld 10481 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( B ^ 2 )  e.  RR )
3736recnd 7818 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( B ^ 2 )  e.  CC )
3833, 35, 37pnpcan2d 8135 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
( ( A ^
2 )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( B ^ 2 ) )  -  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  B
) ) )  +  ( B ^ 2 ) ) )  =  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B )
) )  -  (
( A ^ 2 )  -  ( 2  x.  ( A  x.  B ) ) ) ) )
3931recnd 7818 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( 2  x.  ( A  x.  B ) )  e.  CC )
40392timesd 8986 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( 2  x.  ( 2  x.  ( A  x.  B
) ) )  =  ( ( 2  x.  ( A  x.  B
) )  +  ( 2  x.  ( A  x.  B ) ) ) )
41 2t2e4 8898 . . . . . . . . . . 11  |-  ( 2  x.  2 )  =  4
4241oveq1i 5792 . . . . . . . . . 10  |-  ( ( 2  x.  2 )  x.  ( A  x.  B ) )  =  ( 4  x.  ( A  x.  B )
)
43 2cnd 8817 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  2  e.  CC )
445recnd 7818 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( A  x.  B )  e.  CC )
4543, 43, 44mulassd 7813 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
2  x.  2 )  x.  ( A  x.  B ) )  =  ( 2  x.  (
2  x.  ( A  x.  B ) ) ) )
4642, 45syl5eqr 2187 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( 4  x.  ( A  x.  B ) )  =  ( 2  x.  (
2  x.  ( A  x.  B ) ) ) )
4728recnd 7818 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( A ^ 2 )  e.  CC )
4847, 39, 39pnncand 8136 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
( A ^ 2 )  +  ( 2  x.  ( A  x.  B ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  B )
) ) )  =  ( ( 2  x.  ( A  x.  B
) )  +  ( 2  x.  ( A  x.  B ) ) ) )
4940, 46, 483eqtr4rd 2184 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
( A ^ 2 )  +  ( 2  x.  ( A  x.  B ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  B )
) ) )  =  ( 4  x.  ( A  x.  B )
) )
5027, 38, 493eqtrd 2177 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
( A  +  B
) ^ 2 )  -  ( ( A  -  B ) ^
2 ) )  =  ( 4  x.  ( A  x.  B )
) )
512, 3readdcld 7819 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( A  +  B )  e.  RR )
5251resqcld 10481 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  +  B ) ^ 2 )  e.  RR )
5352recnd 7818 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  +  B ) ^ 2 )  e.  CC )
5419resqcld 10481 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  -  B ) ^ 2 )  e.  RR )
5554recnd 7818 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  -  B ) ^ 2 )  e.  CC )
56 4re 8821 . . . . . . . . . 10  |-  4  e.  RR
57 remulcl 7772 . . . . . . . . . 10  |-  ( ( 4  e.  RR  /\  ( A  x.  B
)  e.  RR )  ->  ( 4  x.  ( A  x.  B
) )  e.  RR )
5856, 5, 57sylancr 411 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( 4  x.  ( A  x.  B ) )  e.  RR )
5958recnd 7818 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( 4  x.  ( A  x.  B ) )  e.  CC )
60 subsub23 7991 . . . . . . . 8  |-  ( ( ( ( A  +  B ) ^ 2 )  e.  CC  /\  ( ( A  -  B ) ^ 2 )  e.  CC  /\  ( 4  x.  ( A  x.  B )
)  e.  CC )  ->  ( ( ( ( A  +  B
) ^ 2 )  -  ( ( A  -  B ) ^
2 ) )  =  ( 4  x.  ( A  x.  B )
)  <->  ( ( ( A  +  B ) ^ 2 )  -  ( 4  x.  ( A  x.  B )
) )  =  ( ( A  -  B
) ^ 2 ) ) )
6153, 55, 59, 60syl3anc 1217 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
( ( A  +  B ) ^ 2 )  -  ( ( A  -  B ) ^ 2 ) )  =  ( 4  x.  ( A  x.  B
) )  <->  ( (
( A  +  B
) ^ 2 )  -  ( 4  x.  ( A  x.  B
) ) )  =  ( ( A  -  B ) ^ 2 ) ) )
6250, 61mpbid 146 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
( A  +  B
) ^ 2 )  -  ( 4  x.  ( A  x.  B
) ) )  =  ( ( A  -  B ) ^ 2 ) )
6320, 62breqtrrd 3964 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  0  <_  ( ( ( A  +  B ) ^ 2 )  -  ( 4  x.  ( A  x.  B ) ) ) )
6452, 58subge0d 8321 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( 0  <_  ( ( ( A  +  B ) ^ 2 )  -  ( 4  x.  ( A  x.  B )
) )  <->  ( 4  x.  ( A  x.  B ) )  <_ 
( ( A  +  B ) ^ 2 ) ) )
6563, 64mpbid 146 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( 4  x.  ( A  x.  B ) )  <_ 
( ( A  +  B ) ^ 2 ) )
6618, 65eqbrtrd 3958 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
2  x.  ( sqr `  ( A  x.  B
) ) ) ^
2 )  <_  (
( A  +  B
) ^ 2 ) )
67 remulcl 7772 . . . . 5  |-  ( ( 2  e.  RR  /\  ( sqr `  ( A  x.  B ) )  e.  RR )  -> 
( 2  x.  ( sqr `  ( A  x.  B ) ) )  e.  RR )
6829, 8, 67sylancr 411 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( 2  x.  ( sqr `  ( A  x.  B )
) )  e.  RR )
69 sqrtge0 10837 . . . . . 6  |-  ( ( ( A  x.  B
)  e.  RR  /\  0  <_  ( A  x.  B ) )  -> 
0  <_  ( sqr `  ( A  x.  B
) ) )
705, 6, 69syl2anc 409 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  0  <_  ( sqr `  ( A  x.  B ) ) )
71 0le2 8834 . . . . . 6  |-  0  <_  2
72 mulge0 8405 . . . . . 6  |-  ( ( ( 2  e.  RR  /\  0  <_  2 )  /\  ( ( sqr `  ( A  x.  B
) )  e.  RR  /\  0  <_  ( sqr `  ( A  x.  B
) ) ) )  ->  0  <_  (
2  x.  ( sqr `  ( A  x.  B
) ) ) )
7329, 71, 72mpanl12 433 . . . . 5  |-  ( ( ( sqr `  ( A  x.  B )
)  e.  RR  /\  0  <_  ( sqr `  ( A  x.  B )
) )  ->  0  <_  ( 2  x.  ( sqr `  ( A  x.  B ) ) ) )
748, 70, 73syl2anc 409 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  0  <_  ( 2  x.  ( sqr `  ( A  x.  B
) ) ) )
75 addge0 8237 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <_  B
) )  ->  0  <_  ( A  +  B
) )
7675an4s 578 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  0  <_  ( A  +  B ) )
7768, 51, 74, 76le2sqd 10487 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
2  x.  ( sqr `  ( A  x.  B
) ) )  <_ 
( A  +  B
)  <->  ( ( 2  x.  ( sqr `  ( A  x.  B )
) ) ^ 2 )  <_  ( ( A  +  B ) ^ 2 ) ) )
7866, 77mpbird 166 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( 2  x.  ( sqr `  ( A  x.  B )
) )  <_  ( A  +  B )
)
79 2pos 8835 . . . . 5  |-  0  <  2
8029, 79pm3.2i 270 . . . 4  |-  ( 2  e.  RR  /\  0  <  2 )
8180a1i 9 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( 2  e.  RR  /\  0  <  2 ) )
82 lemuldiv2 8664 . . 3  |-  ( ( ( sqr `  ( A  x.  B )
)  e.  RR  /\  ( A  +  B
)  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( (
2  x.  ( sqr `  ( A  x.  B
) ) )  <_ 
( A  +  B
)  <->  ( sqr `  ( A  x.  B )
)  <_  ( ( A  +  B )  /  2 ) ) )
838, 51, 81, 82syl3anc 1217 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
2  x.  ( sqr `  ( A  x.  B
) ) )  <_ 
( A  +  B
)  <->  ( sqr `  ( A  x.  B )
)  <_  ( ( A  +  B )  /  2 ) ) )
8478, 83mpbid 146 1  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( sqr `  ( A  x.  B
) )  <_  (
( A  +  B
)  /  2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481   class class class wbr 3937   ` cfv 5131  (class class class)co 5782   CCcc 7642   RRcr 7643   0cc0 7644    + caddc 7647    x. cmul 7649    < clt 7824    <_ cle 7825    - cmin 7957    / cdiv 8456   2c2 8795   4c4 8797   ^cexp 10323   sqrcsqrt 10800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-rp 9471  df-seqfrec 10250  df-exp 10324  df-rsqrt 10802
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator