ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  amgm2 Unicode version

Theorem amgm2 10666
Description: Arithmetic-geometric mean inequality for  n  =  2. (Contributed by Mario Carneiro, 2-Jul-2014.)
Assertion
Ref Expression
amgm2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( sqr `  ( A  x.  B
) )  <_  (
( A  +  B
)  /  2 ) )

Proof of Theorem amgm2
StepHypRef Expression
1 2cn 8591 . . . . . 6  |-  2  e.  CC
2 simpll 497 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  A  e.  RR )
3 simprl 499 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  B  e.  RR )
4 remulcl 7567 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B
)  e.  RR )
52, 3, 4syl2anc 404 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( A  x.  B )  e.  RR )
6 mulge0 8193 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  0  <_  ( A  x.  B ) )
7 resqrtcl 10577 . . . . . . . 8  |-  ( ( ( A  x.  B
)  e.  RR  /\  0  <_  ( A  x.  B ) )  -> 
( sqr `  ( A  x.  B )
)  e.  RR )
85, 6, 7syl2anc 404 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( sqr `  ( A  x.  B
) )  e.  RR )
98recnd 7613 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( sqr `  ( A  x.  B
) )  e.  CC )
10 sqmul 10132 . . . . . 6  |-  ( ( 2  e.  CC  /\  ( sqr `  ( A  x.  B ) )  e.  CC )  -> 
( ( 2  x.  ( sqr `  ( A  x.  B )
) ) ^ 2 )  =  ( ( 2 ^ 2 )  x.  ( ( sqr `  ( A  x.  B
) ) ^ 2 ) ) )
111, 9, 10sylancr 406 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
2  x.  ( sqr `  ( A  x.  B
) ) ) ^
2 )  =  ( ( 2 ^ 2 )  x.  ( ( sqr `  ( A  x.  B ) ) ^ 2 ) ) )
12 sq2 10165 . . . . . . 7  |-  ( 2 ^ 2 )  =  4
1312oveq1i 5700 . . . . . 6  |-  ( ( 2 ^ 2 )  x.  ( ( sqr `  ( A  x.  B
) ) ^ 2 ) )  =  ( 4  x.  ( ( sqr `  ( A  x.  B ) ) ^ 2 ) )
14 resqrtth 10579 . . . . . . . 8  |-  ( ( ( A  x.  B
)  e.  RR  /\  0  <_  ( A  x.  B ) )  -> 
( ( sqr `  ( A  x.  B )
) ^ 2 )  =  ( A  x.  B ) )
155, 6, 14syl2anc 404 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( sqr `  ( A  x.  B ) ) ^
2 )  =  ( A  x.  B ) )
1615oveq2d 5706 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( 4  x.  ( ( sqr `  ( A  x.  B
) ) ^ 2 ) )  =  ( 4  x.  ( A  x.  B ) ) )
1713, 16syl5eq 2139 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
2 ^ 2 )  x.  ( ( sqr `  ( A  x.  B
) ) ^ 2 ) )  =  ( 4  x.  ( A  x.  B ) ) )
1811, 17eqtrd 2127 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
2  x.  ( sqr `  ( A  x.  B
) ) ) ^
2 )  =  ( 4  x.  ( A  x.  B ) ) )
192, 3resubcld 7956 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( A  -  B )  e.  RR )
2019sqge0d 10228 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  0  <_  ( ( A  -  B
) ^ 2 ) )
212recnd 7613 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  A  e.  CC )
223recnd 7613 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  B  e.  CC )
23 binom2 10180 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 2 )  =  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( B ^
2 ) ) )
2421, 22, 23syl2anc 404 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  +  B ) ^ 2 )  =  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B )
) )  +  ( B ^ 2 ) ) )
25 binom2sub 10182 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  -  B ) ^ 2 )  =  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  B ) ) )  +  ( B ^
2 ) ) )
2621, 22, 25syl2anc 404 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  -  B ) ^ 2 )  =  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  B )
) )  +  ( B ^ 2 ) ) )
2724, 26oveq12d 5708 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
( A  +  B
) ^ 2 )  -  ( ( A  -  B ) ^
2 ) )  =  ( ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B
) ) )  +  ( B ^ 2 ) )  -  (
( ( A ^
2 )  -  (
2  x.  ( A  x.  B ) ) )  +  ( B ^ 2 ) ) ) )
282resqcld 10227 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( A ^ 2 )  e.  RR )
29 2re 8590 . . . . . . . . . . . 12  |-  2  e.  RR
30 remulcl 7567 . . . . . . . . . . . 12  |-  ( ( 2  e.  RR  /\  ( A  x.  B
)  e.  RR )  ->  ( 2  x.  ( A  x.  B
) )  e.  RR )
3129, 5, 30sylancr 406 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( 2  x.  ( A  x.  B ) )  e.  RR )
3228, 31readdcld 7614 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B )
) )  e.  RR )
3332recnd 7613 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B )
) )  e.  CC )
3428, 31resubcld 7956 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  B )
) )  e.  RR )
3534recnd 7613 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  B )
) )  e.  CC )
363resqcld 10227 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( B ^ 2 )  e.  RR )
3736recnd 7613 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( B ^ 2 )  e.  CC )
3833, 35, 37pnpcan2d 7928 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
( ( A ^
2 )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( B ^ 2 ) )  -  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  B
) ) )  +  ( B ^ 2 ) ) )  =  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B )
) )  -  (
( A ^ 2 )  -  ( 2  x.  ( A  x.  B ) ) ) ) )
3931recnd 7613 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( 2  x.  ( A  x.  B ) )  e.  CC )
40392timesd 8756 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( 2  x.  ( 2  x.  ( A  x.  B
) ) )  =  ( ( 2  x.  ( A  x.  B
) )  +  ( 2  x.  ( A  x.  B ) ) ) )
41 2t2e4 8668 . . . . . . . . . . 11  |-  ( 2  x.  2 )  =  4
4241oveq1i 5700 . . . . . . . . . 10  |-  ( ( 2  x.  2 )  x.  ( A  x.  B ) )  =  ( 4  x.  ( A  x.  B )
)
43 2cnd 8593 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  2  e.  CC )
445recnd 7613 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( A  x.  B )  e.  CC )
4543, 43, 44mulassd 7608 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
2  x.  2 )  x.  ( A  x.  B ) )  =  ( 2  x.  (
2  x.  ( A  x.  B ) ) ) )
4642, 45syl5eqr 2141 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( 4  x.  ( A  x.  B ) )  =  ( 2  x.  (
2  x.  ( A  x.  B ) ) ) )
4728recnd 7613 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( A ^ 2 )  e.  CC )
4847, 39, 39pnncand 7929 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
( A ^ 2 )  +  ( 2  x.  ( A  x.  B ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  B )
) ) )  =  ( ( 2  x.  ( A  x.  B
) )  +  ( 2  x.  ( A  x.  B ) ) ) )
4940, 46, 483eqtr4rd 2138 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
( A ^ 2 )  +  ( 2  x.  ( A  x.  B ) ) )  -  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  B )
) ) )  =  ( 4  x.  ( A  x.  B )
) )
5027, 38, 493eqtrd 2131 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
( A  +  B
) ^ 2 )  -  ( ( A  -  B ) ^
2 ) )  =  ( 4  x.  ( A  x.  B )
) )
512, 3readdcld 7614 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( A  +  B )  e.  RR )
5251resqcld 10227 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  +  B ) ^ 2 )  e.  RR )
5352recnd 7613 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  +  B ) ^ 2 )  e.  CC )
5419resqcld 10227 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  -  B ) ^ 2 )  e.  RR )
5554recnd 7613 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  -  B ) ^ 2 )  e.  CC )
56 4re 8597 . . . . . . . . . 10  |-  4  e.  RR
57 remulcl 7567 . . . . . . . . . 10  |-  ( ( 4  e.  RR  /\  ( A  x.  B
)  e.  RR )  ->  ( 4  x.  ( A  x.  B
) )  e.  RR )
5856, 5, 57sylancr 406 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( 4  x.  ( A  x.  B ) )  e.  RR )
5958recnd 7613 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( 4  x.  ( A  x.  B ) )  e.  CC )
60 subsub23 7784 . . . . . . . 8  |-  ( ( ( ( A  +  B ) ^ 2 )  e.  CC  /\  ( ( A  -  B ) ^ 2 )  e.  CC  /\  ( 4  x.  ( A  x.  B )
)  e.  CC )  ->  ( ( ( ( A  +  B
) ^ 2 )  -  ( ( A  -  B ) ^
2 ) )  =  ( 4  x.  ( A  x.  B )
)  <->  ( ( ( A  +  B ) ^ 2 )  -  ( 4  x.  ( A  x.  B )
) )  =  ( ( A  -  B
) ^ 2 ) ) )
6153, 55, 59, 60syl3anc 1181 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
( ( A  +  B ) ^ 2 )  -  ( ( A  -  B ) ^ 2 ) )  =  ( 4  x.  ( A  x.  B
) )  <->  ( (
( A  +  B
) ^ 2 )  -  ( 4  x.  ( A  x.  B
) ) )  =  ( ( A  -  B ) ^ 2 ) ) )
6250, 61mpbid 146 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
( A  +  B
) ^ 2 )  -  ( 4  x.  ( A  x.  B
) ) )  =  ( ( A  -  B ) ^ 2 ) )
6320, 62breqtrrd 3893 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  0  <_  ( ( ( A  +  B ) ^ 2 )  -  ( 4  x.  ( A  x.  B ) ) ) )
6452, 58subge0d 8109 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( 0  <_  ( ( ( A  +  B ) ^ 2 )  -  ( 4  x.  ( A  x.  B )
) )  <->  ( 4  x.  ( A  x.  B ) )  <_ 
( ( A  +  B ) ^ 2 ) ) )
6563, 64mpbid 146 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( 4  x.  ( A  x.  B ) )  <_ 
( ( A  +  B ) ^ 2 ) )
6618, 65eqbrtrd 3887 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
2  x.  ( sqr `  ( A  x.  B
) ) ) ^
2 )  <_  (
( A  +  B
) ^ 2 ) )
67 remulcl 7567 . . . . 5  |-  ( ( 2  e.  RR  /\  ( sqr `  ( A  x.  B ) )  e.  RR )  -> 
( 2  x.  ( sqr `  ( A  x.  B ) ) )  e.  RR )
6829, 8, 67sylancr 406 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( 2  x.  ( sqr `  ( A  x.  B )
) )  e.  RR )
69 sqrtge0 10581 . . . . . 6  |-  ( ( ( A  x.  B
)  e.  RR  /\  0  <_  ( A  x.  B ) )  -> 
0  <_  ( sqr `  ( A  x.  B
) ) )
705, 6, 69syl2anc 404 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  0  <_  ( sqr `  ( A  x.  B ) ) )
71 0le2 8610 . . . . . 6  |-  0  <_  2
72 mulge0 8193 . . . . . 6  |-  ( ( ( 2  e.  RR  /\  0  <_  2 )  /\  ( ( sqr `  ( A  x.  B
) )  e.  RR  /\  0  <_  ( sqr `  ( A  x.  B
) ) ) )  ->  0  <_  (
2  x.  ( sqr `  ( A  x.  B
) ) ) )
7329, 71, 72mpanl12 428 . . . . 5  |-  ( ( ( sqr `  ( A  x.  B )
)  e.  RR  /\  0  <_  ( sqr `  ( A  x.  B )
) )  ->  0  <_  ( 2  x.  ( sqr `  ( A  x.  B ) ) ) )
748, 70, 73syl2anc 404 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  0  <_  ( 2  x.  ( sqr `  ( A  x.  B
) ) ) )
75 addge0 8026 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <_  B
) )  ->  0  <_  ( A  +  B
) )
7675an4s 556 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  0  <_  ( A  +  B ) )
7768, 51, 74, 76le2sqd 10233 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
2  x.  ( sqr `  ( A  x.  B
) ) )  <_ 
( A  +  B
)  <->  ( ( 2  x.  ( sqr `  ( A  x.  B )
) ) ^ 2 )  <_  ( ( A  +  B ) ^ 2 ) ) )
7866, 77mpbird 166 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( 2  x.  ( sqr `  ( A  x.  B )
) )  <_  ( A  +  B )
)
79 2pos 8611 . . . . 5  |-  0  <  2
8029, 79pm3.2i 267 . . . 4  |-  ( 2  e.  RR  /\  0  <  2 )
8180a1i 9 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( 2  e.  RR  /\  0  <  2 ) )
82 lemuldiv2 8440 . . 3  |-  ( ( ( sqr `  ( A  x.  B )
)  e.  RR  /\  ( A  +  B
)  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( (
2  x.  ( sqr `  ( A  x.  B
) ) )  <_ 
( A  +  B
)  <->  ( sqr `  ( A  x.  B )
)  <_  ( ( A  +  B )  /  2 ) ) )
838, 51, 81, 82syl3anc 1181 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
2  x.  ( sqr `  ( A  x.  B
) ) )  <_ 
( A  +  B
)  <->  ( sqr `  ( A  x.  B )
)  <_  ( ( A  +  B )  /  2 ) ) )
8478, 83mpbid 146 1  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( sqr `  ( A  x.  B
) )  <_  (
( A  +  B
)  /  2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1296    e. wcel 1445   class class class wbr 3867   ` cfv 5049  (class class class)co 5690   CCcc 7445   RRcr 7446   0cc0 7447    + caddc 7450    x. cmul 7452    < clt 7619    <_ cle 7620    - cmin 7750    / cdiv 8236   2c2 8571   4c4 8573   ^cexp 10069   sqrcsqrt 10544
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-coll 3975  ax-sep 3978  ax-nul 3986  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-iinf 4431  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-1re 7536  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-mulrcl 7541  ax-addcom 7542  ax-mulcom 7543  ax-addass 7544  ax-mulass 7545  ax-distr 7546  ax-i2m1 7547  ax-0lt1 7548  ax-1rid 7549  ax-0id 7550  ax-rnegex 7551  ax-precex 7552  ax-cnre 7553  ax-pre-ltirr 7554  ax-pre-ltwlin 7555  ax-pre-lttrn 7556  ax-pre-apti 7557  ax-pre-ltadd 7558  ax-pre-mulgt0 7559  ax-pre-mulext 7560  ax-arch 7561  ax-caucvg 7562
This theorem depends on definitions:  df-bi 116  df-dc 784  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-reu 2377  df-rmo 2378  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-if 3414  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-tr 3959  df-id 4144  df-po 4147  df-iso 4148  df-iord 4217  df-on 4219  df-ilim 4220  df-suc 4222  df-iom 4434  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-1st 5949  df-2nd 5950  df-recs 6108  df-frec 6194  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625  df-sub 7752  df-neg 7753  df-reap 8149  df-ap 8156  df-div 8237  df-inn 8521  df-2 8579  df-3 8580  df-4 8581  df-n0 8772  df-z 8849  df-uz 9119  df-rp 9234  df-seqfrec 10001  df-exp 10070  df-rsqrt 10546
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator