| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > amgm2 | Unicode version | ||
| Description: Arithmetic-geometric mean
inequality for |
| Ref | Expression |
|---|---|
| amgm2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 9142 |
. . . . . 6
| |
| 2 | simpll 527 |
. . . . . . . . 9
| |
| 3 | simprl 529 |
. . . . . . . . 9
| |
| 4 | remulcl 8088 |
. . . . . . . . 9
| |
| 5 | 2, 3, 4 | syl2anc 411 |
. . . . . . . 8
|
| 6 | mulge0 8727 |
. . . . . . . 8
| |
| 7 | resqrtcl 11455 |
. . . . . . . 8
| |
| 8 | 5, 6, 7 | syl2anc 411 |
. . . . . . 7
|
| 9 | 8 | recnd 8136 |
. . . . . 6
|
| 10 | sqmul 10783 |
. . . . . 6
| |
| 11 | 1, 9, 10 | sylancr 414 |
. . . . 5
|
| 12 | sq2 10817 |
. . . . . . 7
| |
| 13 | 12 | oveq1i 5977 |
. . . . . 6
|
| 14 | resqrtth 11457 |
. . . . . . . 8
| |
| 15 | 5, 6, 14 | syl2anc 411 |
. . . . . . 7
|
| 16 | 15 | oveq2d 5983 |
. . . . . 6
|
| 17 | 13, 16 | eqtrid 2252 |
. . . . 5
|
| 18 | 11, 17 | eqtrd 2240 |
. . . 4
|
| 19 | 2, 3 | resubcld 8488 |
. . . . . . 7
|
| 20 | 19 | sqge0d 10882 |
. . . . . 6
|
| 21 | 2 | recnd 8136 |
. . . . . . . . . 10
|
| 22 | 3 | recnd 8136 |
. . . . . . . . . 10
|
| 23 | binom2 10833 |
. . . . . . . . . 10
| |
| 24 | 21, 22, 23 | syl2anc 411 |
. . . . . . . . 9
|
| 25 | binom2sub 10835 |
. . . . . . . . . 10
| |
| 26 | 21, 22, 25 | syl2anc 411 |
. . . . . . . . 9
|
| 27 | 24, 26 | oveq12d 5985 |
. . . . . . . 8
|
| 28 | 2 | resqcld 10881 |
. . . . . . . . . . 11
|
| 29 | 2re 9141 |
. . . . . . . . . . . 12
| |
| 30 | remulcl 8088 |
. . . . . . . . . . . 12
| |
| 31 | 29, 5, 30 | sylancr 414 |
. . . . . . . . . . 11
|
| 32 | 28, 31 | readdcld 8137 |
. . . . . . . . . 10
|
| 33 | 32 | recnd 8136 |
. . . . . . . . 9
|
| 34 | 28, 31 | resubcld 8488 |
. . . . . . . . . 10
|
| 35 | 34 | recnd 8136 |
. . . . . . . . 9
|
| 36 | 3 | resqcld 10881 |
. . . . . . . . . 10
|
| 37 | 36 | recnd 8136 |
. . . . . . . . 9
|
| 38 | 33, 35, 37 | pnpcan2d 8456 |
. . . . . . . 8
|
| 39 | 31 | recnd 8136 |
. . . . . . . . . 10
|
| 40 | 39 | 2timesd 9315 |
. . . . . . . . 9
|
| 41 | 2t2e4 9226 |
. . . . . . . . . . 11
| |
| 42 | 41 | oveq1i 5977 |
. . . . . . . . . 10
|
| 43 | 2cnd 9144 |
. . . . . . . . . . 11
| |
| 44 | 5 | recnd 8136 |
. . . . . . . . . . 11
|
| 45 | 43, 43, 44 | mulassd 8131 |
. . . . . . . . . 10
|
| 46 | 42, 45 | eqtr3id 2254 |
. . . . . . . . 9
|
| 47 | 28 | recnd 8136 |
. . . . . . . . . 10
|
| 48 | 47, 39, 39 | pnncand 8457 |
. . . . . . . . 9
|
| 49 | 40, 46, 48 | 3eqtr4rd 2251 |
. . . . . . . 8
|
| 50 | 27, 38, 49 | 3eqtrd 2244 |
. . . . . . 7
|
| 51 | 2, 3 | readdcld 8137 |
. . . . . . . . . 10
|
| 52 | 51 | resqcld 10881 |
. . . . . . . . 9
|
| 53 | 52 | recnd 8136 |
. . . . . . . 8
|
| 54 | 19 | resqcld 10881 |
. . . . . . . . 9
|
| 55 | 54 | recnd 8136 |
. . . . . . . 8
|
| 56 | 4re 9148 |
. . . . . . . . . 10
| |
| 57 | remulcl 8088 |
. . . . . . . . . 10
| |
| 58 | 56, 5, 57 | sylancr 414 |
. . . . . . . . 9
|
| 59 | 58 | recnd 8136 |
. . . . . . . 8
|
| 60 | subsub23 8312 |
. . . . . . . 8
| |
| 61 | 53, 55, 59, 60 | syl3anc 1250 |
. . . . . . 7
|
| 62 | 50, 61 | mpbid 147 |
. . . . . 6
|
| 63 | 20, 62 | breqtrrd 4087 |
. . . . 5
|
| 64 | 52, 58 | subge0d 8643 |
. . . . 5
|
| 65 | 63, 64 | mpbid 147 |
. . . 4
|
| 66 | 18, 65 | eqbrtrd 4081 |
. . 3
|
| 67 | remulcl 8088 |
. . . . 5
| |
| 68 | 29, 8, 67 | sylancr 414 |
. . . 4
|
| 69 | sqrtge0 11459 |
. . . . . 6
| |
| 70 | 5, 6, 69 | syl2anc 411 |
. . . . 5
|
| 71 | 0le2 9161 |
. . . . . 6
| |
| 72 | mulge0 8727 |
. . . . . 6
| |
| 73 | 29, 71, 72 | mpanl12 436 |
. . . . 5
|
| 74 | 8, 70, 73 | syl2anc 411 |
. . . 4
|
| 75 | addge0 8559 |
. . . . 5
| |
| 76 | 75 | an4s 588 |
. . . 4
|
| 77 | 68, 51, 74, 76 | le2sqd 10887 |
. . 3
|
| 78 | 66, 77 | mpbird 167 |
. 2
|
| 79 | 2pos 9162 |
. . . . 5
| |
| 80 | 29, 79 | pm3.2i 272 |
. . . 4
|
| 81 | 80 | a1i 9 |
. . 3
|
| 82 | lemuldiv2 8990 |
. . 3
| |
| 83 | 8, 51, 81, 82 | syl3anc 1250 |
. 2
|
| 84 | 78, 83 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-n0 9331 df-z 9408 df-uz 9684 df-rp 9811 df-seqfrec 10630 df-exp 10721 df-rsqrt 11424 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |