Proof of Theorem expaddzap
| Step | Hyp | Ref
| Expression |
| 1 | | elznn0nn 9357 |
. . 3

       |
| 2 | | elznn0nn 9357 |
. . . 4

       |
| 3 | | expadd 10690 |
. . . . . . . 8
 
                   |
| 4 | 3 | 3expia 1207 |
. . . . . . 7
 
     
               |
| 5 | 4 | adantlr 477 |
. . . . . 6
   # 
     
               |
| 6 | | expaddzaplem 10691 |
. . . . . . 7
   #  

                    |
| 7 | 6 | 3expia 1207 |
. . . . . 6
   #  

  
                   |
| 8 | 5, 7 | jaodan 798 |
. . . . 5
   #  
 
       
               |
| 9 | | expaddzaplem 10691 |
. . . . . . . . 9
   #  

                    |
| 10 | | simp3 1001 |
. . . . . . . . . . . 12
   #  

    |
| 11 | 10 | nn0cnd 9321 |
. . . . . . . . . . 11
   #  

    |
| 12 | | simp2l 1025 |
. . . . . . . . . . . 12
   #  

    |
| 13 | 12 | recnd 8072 |
. . . . . . . . . . 11
   #  

    |
| 14 | 11, 13 | addcomd 8194 |
. . . . . . . . . 10
   #  

        |
| 15 | 14 | oveq2d 5941 |
. . . . . . . . 9
   #  

                |
| 16 | | simp1l 1023 |
. . . . . . . . . . 11
   #  

    |
| 17 | | expcl 10666 |
. . . . . . . . . . 11
 
       |
| 18 | 16, 10, 17 | syl2anc 411 |
. . . . . . . . . 10
   #  

        |
| 19 | | simp1r 1024 |
. . . . . . . . . . 11
   #  

  #   |
| 20 | 13 | negnegd 8345 |
. . . . . . . . . . . 12
   #  

      |
| 21 | | simp2r 1026 |
. . . . . . . . . . . . . 14
   #  

     |
| 22 | 21 | nnnn0d 9319 |
. . . . . . . . . . . . 13
   #  

     |
| 23 | | nn0negz 9377 |
. . . . . . . . . . . . 13
 
    |
| 24 | 22, 23 | syl 14 |
. . . . . . . . . . . 12
   #  

      |
| 25 | 20, 24 | eqeltrrd 2274 |
. . . . . . . . . . 11
   #  

    |
| 26 | | expclzap 10673 |
. . . . . . . . . . 11
  #
       |
| 27 | 16, 19, 25, 26 | syl3anc 1249 |
. . . . . . . . . 10
   #  

        |
| 28 | 18, 27 | mulcomd 8065 |
. . . . . . . . 9
   #  

                        |
| 29 | 9, 15, 28 | 3eqtr4d 2239 |
. . . . . . . 8
   #  

                    |
| 30 | 29 | 3expia 1207 |
. . . . . . 7
   #  

  
                   |
| 31 | 30 | impancom 260 |
. . . . . 6
   # 
                        |
| 32 | | simp2l 1025 |
. . . . . . . . . . . . . . 15
   #  

    
  |
| 33 | 32 | recnd 8072 |
. . . . . . . . . . . . . 14
   #  

    
  |
| 34 | | simp3l 1027 |
. . . . . . . . . . . . . . 15
   #  

    
  |
| 35 | 34 | recnd 8072 |
. . . . . . . . . . . . . 14
   #  

    
  |
| 36 | 33, 35 | negdid 8367 |
. . . . . . . . . . . . 13
   #  

         
    |
| 37 | 36 | oveq2d 5941 |
. . . . . . . . . . . 12
   #  

         
            |
| 38 | | simp1l 1023 |
. . . . . . . . . . . . 13
   #  

    
  |
| 39 | | simp2r 1026 |
. . . . . . . . . . . . . 14
   #  

        |
| 40 | 39 | nnnn0d 9319 |
. . . . . . . . . . . . 13
   #  

        |
| 41 | | simp3r 1028 |
. . . . . . . . . . . . . 14
   #  

        |
| 42 | 41 | nnnn0d 9319 |
. . . . . . . . . . . . 13
   #  

        |
| 43 | | expadd 10690 |
. . . . . . . . . . . . 13
                           |
| 44 | 38, 40, 42, 43 | syl3anc 1249 |
. . . . . . . . . . . 12
   #  

                           |
| 45 | 37, 44 | eqtrd 2229 |
. . . . . . . . . . 11
   #  

         
                |
| 46 | 45 | oveq2d 5941 |
. . . . . . . . . 10
   #  

                              |
| 47 | | 1t1e1 9160 |
. . . . . . . . . . 11
   |
| 48 | 47 | oveq1i 5935 |
. . . . . . . . . 10
                               |
| 49 | 46, 48 | eqtr4di 2247 |
. . . . . . . . 9
   #  

                                |
| 50 | | expcl 10666 |
. . . . . . . . . . 11
           |
| 51 | 38, 40, 50 | syl2anc 411 |
. . . . . . . . . 10
   #  

            |
| 52 | | simp1r 1024 |
. . . . . . . . . . 11
   #  

     #   |
| 53 | 40 | nn0zd 9463 |
. . . . . . . . . . 11
   #  

        |
| 54 | | expap0i 10680 |
. . . . . . . . . . 11
  #
       #   |
| 55 | 38, 52, 53, 54 | syl3anc 1249 |
. . . . . . . . . 10
   #  

          #   |
| 56 | | expcl 10666 |
. . . . . . . . . . 11
           |
| 57 | 38, 42, 56 | syl2anc 411 |
. . . . . . . . . 10
   #  

            |
| 58 | 42 | nn0zd 9463 |
. . . . . . . . . . 11
   #  

        |
| 59 | | expap0i 10680 |
. . . . . . . . . . 11
  #
       #   |
| 60 | 38, 52, 58, 59 | syl3anc 1249 |
. . . . . . . . . 10
   #  

          #   |
| 61 | | ax-1cn 7989 |
. . . . . . . . . . 11
 |
| 62 | | divmuldivap 8756 |
. . . . . . . . . . 11
                #             #   
                                  |
| 63 | 61, 61, 62 | mpanl12 436 |
. . . . . . . . . 10
             #             #                                     |
| 64 | 51, 55, 57, 60, 63 | syl22anc 1250 |
. . . . . . . . 9
   #  

                                       |
| 65 | 49, 64 | eqtr4d 2232 |
. . . . . . . 8
   #  

                                |
| 66 | 33, 35 | addcld 8063 |
. . . . . . . . 9
   #  

         |
| 67 | 40, 42 | nn0addcld 9323 |
. . . . . . . . . 10
   #  

           |
| 68 | 36, 67 | eqeltrd 2273 |
. . . . . . . . 9
   #  

          |
| 69 | | expineg2 10657 |
. . . . . . . . 9
   #         
                 |
| 70 | 38, 52, 66, 68, 69 | syl22anc 1250 |
. . . . . . . 8
   #  

        
             |
| 71 | | expineg2 10657 |
. . . . . . . . . 10
   #  

               |
| 72 | 38, 52, 33, 40, 71 | syl22anc 1250 |
. . . . . . . . 9
   #  

                  |
| 73 | | expineg2 10657 |
. . . . . . . . . 10
   #  

               |
| 74 | 38, 52, 35, 42, 73 | syl22anc 1250 |
. . . . . . . . 9
   #  

                  |
| 75 | 72, 74 | oveq12d 5943 |
. . . . . . . 8
   #  

                                 |
| 76 | 65, 70, 75 | 3eqtr4d 2239 |
. . . . . . 7
   #  

        
              |
| 77 | 76 | 3expia 1207 |
. . . . . 6
   #  

    
                    |
| 78 | 31, 77 | jaodan 798 |
. . . . 5
   #  
 
                          |
| 79 | 8, 78 | jaod 718 |
. . . 4
   #  
 
    
       
               |
| 80 | 2, 79 | sylan2b 287 |
. . 3
   # 
  
       
               |
| 81 | 1, 80 | biimtrid 152 |
. 2
   # 
     
               |
| 82 | 81 | impr 379 |
1
   #  
 
                  |