ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expaddzap Unicode version

Theorem expaddzap 10507
Description: Sum of exponents law for integer exponentiation. (Contributed by Jim Kingdon, 10-Jun-2020.)
Assertion
Ref Expression
expaddzap  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( A ^ ( M  +  N ) )  =  ( ( A ^ M )  x.  ( A ^ N ) ) )

Proof of Theorem expaddzap
StepHypRef Expression
1 elznn0nn 9213 . . 3  |-  ( N  e.  ZZ  <->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
2 elznn0nn 9213 . . . 4  |-  ( M  e.  ZZ  <->  ( M  e.  NN0  \/  ( M  e.  RR  /\  -u M  e.  NN ) ) )
3 expadd 10505 . . . . . . . 8  |-  ( ( A  e.  CC  /\  M  e.  NN0  /\  N  e.  NN0 )  ->  ( A ^ ( M  +  N ) )  =  ( ( A ^ M )  x.  ( A ^ N ) ) )
433expia 1200 . . . . . . 7  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( N  e.  NN0  ->  ( A ^ ( M  +  N )
)  =  ( ( A ^ M )  x.  ( A ^ N ) ) ) )
54adantlr 474 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  NN0 )  -> 
( N  e.  NN0  ->  ( A ^ ( M  +  N )
)  =  ( ( A ^ M )  x.  ( A ^ N ) ) ) )
6 expaddzaplem 10506 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^
( M  +  N
) )  =  ( ( A ^ M
)  x.  ( A ^ N ) ) )
763expia 1200 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN ) )  ->  ( N  e.  NN0  ->  ( A ^ ( M  +  N ) )  =  ( ( A ^ M )  x.  ( A ^ N ) ) ) )
85, 7jaodan 792 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  NN0  \/  ( M  e.  RR  /\  -u M  e.  NN ) ) )  -> 
( N  e.  NN0  ->  ( A ^ ( M  +  N )
)  =  ( ( A ^ M )  x.  ( A ^ N ) ) ) )
9 expaddzaplem 10506 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  ( A ^
( N  +  M
) )  =  ( ( A ^ N
)  x.  ( A ^ M ) ) )
10 simp3 994 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  M  e.  NN0 )
1110nn0cnd 9177 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  M  e.  CC )
12 simp2l 1018 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  N  e.  RR )
1312recnd 7935 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  N  e.  CC )
1411, 13addcomd 8057 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  ( M  +  N )  =  ( N  +  M ) )
1514oveq2d 5866 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  ( A ^
( M  +  N
) )  =  ( A ^ ( N  +  M ) ) )
16 simp1l 1016 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  A  e.  CC )
17 expcl 10481 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( A ^ M
)  e.  CC )
1816, 10, 17syl2anc 409 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  ( A ^ M )  e.  CC )
19 simp1r 1017 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  A #  0 )
2013negnegd 8208 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  -u -u N  =  N )
21 simp2r 1019 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  -u N  e.  NN )
2221nnnn0d 9175 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  -u N  e.  NN0 )
23 nn0negz 9233 . . . . . . . . . . . . 13  |-  ( -u N  e.  NN0  ->  -u -u N  e.  ZZ )
2422, 23syl 14 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  -u -u N  e.  ZZ )
2520, 24eqeltrrd 2248 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  N  e.  ZZ )
26 expclzap 10488 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A #  0  /\  N  e.  ZZ )  ->  ( A ^ N )  e.  CC )
2716, 19, 25, 26syl3anc 1233 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  ( A ^ N )  e.  CC )
2818, 27mulcomd 7928 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  ( ( A ^ M )  x.  ( A ^ N
) )  =  ( ( A ^ N
)  x.  ( A ^ M ) ) )
299, 15, 283eqtr4d 2213 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  ( A ^
( M  +  N
) )  =  ( ( A ^ M
)  x.  ( A ^ N ) ) )
30293expia 1200 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( M  e.  NN0  ->  ( A ^ ( M  +  N ) )  =  ( ( A ^ M )  x.  ( A ^ N ) ) ) )
3130impancom 258 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  NN0 )  -> 
( ( N  e.  RR  /\  -u N  e.  NN )  ->  ( A ^ ( M  +  N ) )  =  ( ( A ^ M )  x.  ( A ^ N ) ) ) )
32 simp2l 1018 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  M  e.  RR )
3332recnd 7935 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  M  e.  CC )
34 simp3l 1020 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  N  e.  RR )
3534recnd 7935 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  N  e.  CC )
3633, 35negdid 8230 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u ( M  +  N
)  =  ( -u M  +  -u N ) )
3736oveq2d 5866 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ -u ( M  +  N )
)  =  ( A ^ ( -u M  +  -u N ) ) )
38 simp1l 1016 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  A  e.  CC )
39 simp2r 1019 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u M  e.  NN )
4039nnnn0d 9175 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u M  e.  NN0 )
41 simp3r 1021 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  NN )
4241nnnn0d 9175 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  NN0 )
43 expadd 10505 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  -u M  e.  NN0  /\  -u N  e.  NN0 )  ->  ( A ^ ( -u M  +  -u N
) )  =  ( ( A ^ -u M
)  x.  ( A ^ -u N ) ) )
4438, 40, 42, 43syl3anc 1233 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ ( -u M  +  -u N
) )  =  ( ( A ^ -u M
)  x.  ( A ^ -u N ) ) )
4537, 44eqtrd 2203 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ -u ( M  +  N )
)  =  ( ( A ^ -u M
)  x.  ( A ^ -u N ) ) )
4645oveq2d 5866 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( 1  /  ( A ^ -u ( M  +  N ) ) )  =  ( 1  /  ( ( A ^ -u M )  x.  ( A ^ -u N ) ) ) )
47 1t1e1 9017 . . . . . . . . . . 11  |-  ( 1  x.  1 )  =  1
4847oveq1i 5860 . . . . . . . . . 10  |-  ( ( 1  x.  1 )  /  ( ( A ^ -u M )  x.  ( A ^ -u N ) ) )  =  ( 1  / 
( ( A ^ -u M )  x.  ( A ^ -u N ) ) )
4946, 48eqtr4di 2221 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( 1  /  ( A ^ -u ( M  +  N ) ) )  =  ( ( 1  x.  1 )  /  ( ( A ^ -u M )  x.  ( A ^ -u N ) ) ) )
50 expcl 10481 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  -u M  e.  NN0 )  ->  ( A ^ -u M
)  e.  CC )
5138, 40, 50syl2anc 409 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ -u M
)  e.  CC )
52 simp1r 1017 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  A #  0 )
5340nn0zd 9319 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u M  e.  ZZ )
54 expap0i 10495 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A #  0  /\  -u M  e.  ZZ )  ->  ( A ^ -u M ) #  0 )
5538, 52, 53, 54syl3anc 1233 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ -u M
) #  0 )
56 expcl 10481 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  -u N  e.  NN0 )  ->  ( A ^ -u N
)  e.  CC )
5738, 42, 56syl2anc 409 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ -u N
)  e.  CC )
5842nn0zd 9319 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  ZZ )
59 expap0i 10495 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A #  0  /\  -u N  e.  ZZ )  ->  ( A ^ -u N ) #  0 )
6038, 52, 58, 59syl3anc 1233 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ -u N
) #  0 )
61 ax-1cn 7854 . . . . . . . . . . 11  |-  1  e.  CC
62 divmuldivap 8616 . . . . . . . . . . 11  |-  ( ( ( 1  e.  CC  /\  1  e.  CC )  /\  ( ( ( A ^ -u M
)  e.  CC  /\  ( A ^ -u M
) #  0 )  /\  ( ( A ^ -u N )  e.  CC  /\  ( A ^ -u N
) #  0 ) ) )  ->  ( (
1  /  ( A ^ -u M ) )  x.  ( 1  /  ( A ^ -u N ) ) )  =  ( ( 1  x.  1 )  / 
( ( A ^ -u M )  x.  ( A ^ -u N ) ) ) )
6361, 61, 62mpanl12 434 . . . . . . . . . 10  |-  ( ( ( ( A ^ -u M )  e.  CC  /\  ( A ^ -u M
) #  0 )  /\  ( ( A ^ -u N )  e.  CC  /\  ( A ^ -u N
) #  0 ) )  ->  ( ( 1  /  ( A ^ -u M ) )  x.  ( 1  /  ( A ^ -u N ) ) )  =  ( ( 1  x.  1 )  /  ( ( A ^ -u M
)  x.  ( A ^ -u N ) ) ) )
6451, 55, 57, 60, 63syl22anc 1234 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( ( 1  / 
( A ^ -u M
) )  x.  (
1  /  ( A ^ -u N ) ) )  =  ( ( 1  x.  1 )  /  ( ( A ^ -u M
)  x.  ( A ^ -u N ) ) ) )
6549, 64eqtr4d 2206 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( 1  /  ( A ^ -u ( M  +  N ) ) )  =  ( ( 1  /  ( A ^ -u M ) )  x.  ( 1  /  ( A ^ -u N ) ) ) )
6633, 35addcld 7926 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( M  +  N
)  e.  CC )
6740, 42nn0addcld 9179 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( -u M  +  -u N )  e.  NN0 )
6836, 67eqeltrd 2247 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u ( M  +  N
)  e.  NN0 )
69 expineg2 10472 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( ( M  +  N )  e.  CC  /\  -u ( M  +  N
)  e.  NN0 )
)  ->  ( A ^ ( M  +  N ) )  =  ( 1  /  ( A ^ -u ( M  +  N ) ) ) )
7038, 52, 66, 68, 69syl22anc 1234 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ ( M  +  N )
)  =  ( 1  /  ( A ^ -u ( M  +  N
) ) ) )
71 expineg2 10472 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  CC  /\  -u M  e.  NN0 ) )  ->  ( A ^ M )  =  ( 1  /  ( A ^ -u M ) ) )
7238, 52, 33, 40, 71syl22anc 1234 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ M
)  =  ( 1  /  ( A ^ -u M ) ) )
73 expineg2 10472 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  CC  /\  -u N  e.  NN0 ) )  ->  ( A ^ N )  =  ( 1  /  ( A ^ -u N ) ) )
7438, 52, 35, 42, 73syl22anc 1234 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ N
)  =  ( 1  /  ( A ^ -u N ) ) )
7572, 74oveq12d 5868 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( ( A ^ M )  x.  ( A ^ N ) )  =  ( ( 1  /  ( A ^ -u M ) )  x.  ( 1  /  ( A ^ -u N ) ) ) )
7665, 70, 753eqtr4d 2213 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ ( M  +  N )
)  =  ( ( A ^ M )  x.  ( A ^ N ) ) )
77763expia 1200 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN ) )  ->  (
( N  e.  RR  /\  -u N  e.  NN )  ->  ( A ^
( M  +  N
) )  =  ( ( A ^ M
)  x.  ( A ^ N ) ) ) )
7831, 77jaodan 792 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  NN0  \/  ( M  e.  RR  /\  -u M  e.  NN ) ) )  -> 
( ( N  e.  RR  /\  -u N  e.  NN )  ->  ( A ^ ( M  +  N ) )  =  ( ( A ^ M )  x.  ( A ^ N ) ) ) )
798, 78jaod 712 . . . 4  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  NN0  \/  ( M  e.  RR  /\  -u M  e.  NN ) ) )  -> 
( ( N  e. 
NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ ( M  +  N )
)  =  ( ( A ^ M )  x.  ( A ^ N ) ) ) )
802, 79sylan2b 285 . . 3  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  ZZ )  ->  ( ( N  e. 
NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ ( M  +  N )
)  =  ( ( A ^ M )  x.  ( A ^ N ) ) ) )
811, 80syl5bi 151 . 2  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  ZZ )  ->  ( N  e.  ZZ  ->  ( A ^ ( M  +  N )
)  =  ( ( A ^ M )  x.  ( A ^ N ) ) ) )
8281impr 377 1  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( A ^ ( M  +  N ) )  =  ( ( A ^ M )  x.  ( A ^ N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 703    /\ w3a 973    = wceq 1348    e. wcel 2141   class class class wbr 3987  (class class class)co 5850   CCcc 7759   RRcr 7760   0cc0 7761   1c1 7762    + caddc 7764    x. cmul 7766   -ucneg 8078   # cap 8487    / cdiv 8576   NNcn 8865   NN0cn0 9122   ZZcz 9199   ^cexp 10462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-mulrcl 7860  ax-addcom 7861  ax-mulcom 7862  ax-addass 7863  ax-mulass 7864  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-1rid 7868  ax-0id 7869  ax-rnegex 7870  ax-precex 7871  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-apti 7876  ax-pre-ltadd 7877  ax-pre-mulgt0 7878  ax-pre-mulext 7879
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-recs 6281  df-frec 6367  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-reap 8481  df-ap 8488  df-div 8577  df-inn 8866  df-n0 9123  df-z 9200  df-uz 9475  df-seqfrec 10389  df-exp 10463
This theorem is referenced by:  m1expeven  10510  expsubap  10511  expp1zap  10512  pcaddlem  12279
  Copyright terms: Public domain W3C validator