ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expaddzap Unicode version

Theorem expaddzap 10728
Description: Sum of exponents law for integer exponentiation. (Contributed by Jim Kingdon, 10-Jun-2020.)
Assertion
Ref Expression
expaddzap  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( A ^ ( M  +  N ) )  =  ( ( A ^ M )  x.  ( A ^ N ) ) )

Proof of Theorem expaddzap
StepHypRef Expression
1 elznn0nn 9386 . . 3  |-  ( N  e.  ZZ  <->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
2 elznn0nn 9386 . . . 4  |-  ( M  e.  ZZ  <->  ( M  e.  NN0  \/  ( M  e.  RR  /\  -u M  e.  NN ) ) )
3 expadd 10726 . . . . . . . 8  |-  ( ( A  e.  CC  /\  M  e.  NN0  /\  N  e.  NN0 )  ->  ( A ^ ( M  +  N ) )  =  ( ( A ^ M )  x.  ( A ^ N ) ) )
433expia 1208 . . . . . . 7  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( N  e.  NN0  ->  ( A ^ ( M  +  N )
)  =  ( ( A ^ M )  x.  ( A ^ N ) ) ) )
54adantlr 477 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  NN0 )  -> 
( N  e.  NN0  ->  ( A ^ ( M  +  N )
)  =  ( ( A ^ M )  x.  ( A ^ N ) ) ) )
6 expaddzaplem 10727 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^
( M  +  N
) )  =  ( ( A ^ M
)  x.  ( A ^ N ) ) )
763expia 1208 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN ) )  ->  ( N  e.  NN0  ->  ( A ^ ( M  +  N ) )  =  ( ( A ^ M )  x.  ( A ^ N ) ) ) )
85, 7jaodan 799 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  NN0  \/  ( M  e.  RR  /\  -u M  e.  NN ) ) )  -> 
( N  e.  NN0  ->  ( A ^ ( M  +  N )
)  =  ( ( A ^ M )  x.  ( A ^ N ) ) ) )
9 expaddzaplem 10727 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  ( A ^
( N  +  M
) )  =  ( ( A ^ N
)  x.  ( A ^ M ) ) )
10 simp3 1002 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  M  e.  NN0 )
1110nn0cnd 9350 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  M  e.  CC )
12 simp2l 1026 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  N  e.  RR )
1312recnd 8101 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  N  e.  CC )
1411, 13addcomd 8223 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  ( M  +  N )  =  ( N  +  M ) )
1514oveq2d 5960 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  ( A ^
( M  +  N
) )  =  ( A ^ ( N  +  M ) ) )
16 simp1l 1024 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  A  e.  CC )
17 expcl 10702 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( A ^ M
)  e.  CC )
1816, 10, 17syl2anc 411 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  ( A ^ M )  e.  CC )
19 simp1r 1025 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  A #  0 )
2013negnegd 8374 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  -u -u N  =  N )
21 simp2r 1027 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  -u N  e.  NN )
2221nnnn0d 9348 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  -u N  e.  NN0 )
23 nn0negz 9406 . . . . . . . . . . . . 13  |-  ( -u N  e.  NN0  ->  -u -u N  e.  ZZ )
2422, 23syl 14 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  -u -u N  e.  ZZ )
2520, 24eqeltrrd 2283 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  N  e.  ZZ )
26 expclzap 10709 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A #  0  /\  N  e.  ZZ )  ->  ( A ^ N )  e.  CC )
2716, 19, 25, 26syl3anc 1250 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  ( A ^ N )  e.  CC )
2818, 27mulcomd 8094 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  ( ( A ^ M )  x.  ( A ^ N
) )  =  ( ( A ^ N
)  x.  ( A ^ M ) ) )
299, 15, 283eqtr4d 2248 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN )  /\  M  e.  NN0 )  ->  ( A ^
( M  +  N
) )  =  ( ( A ^ M
)  x.  ( A ^ N ) ) )
30293expia 1208 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( M  e.  NN0  ->  ( A ^ ( M  +  N ) )  =  ( ( A ^ M )  x.  ( A ^ N ) ) ) )
3130impancom 260 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  NN0 )  -> 
( ( N  e.  RR  /\  -u N  e.  NN )  ->  ( A ^ ( M  +  N ) )  =  ( ( A ^ M )  x.  ( A ^ N ) ) ) )
32 simp2l 1026 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  M  e.  RR )
3332recnd 8101 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  M  e.  CC )
34 simp3l 1028 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  N  e.  RR )
3534recnd 8101 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  N  e.  CC )
3633, 35negdid 8396 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u ( M  +  N
)  =  ( -u M  +  -u N ) )
3736oveq2d 5960 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ -u ( M  +  N )
)  =  ( A ^ ( -u M  +  -u N ) ) )
38 simp1l 1024 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  A  e.  CC )
39 simp2r 1027 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u M  e.  NN )
4039nnnn0d 9348 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u M  e.  NN0 )
41 simp3r 1029 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  NN )
4241nnnn0d 9348 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  NN0 )
43 expadd 10726 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  -u M  e.  NN0  /\  -u N  e.  NN0 )  ->  ( A ^ ( -u M  +  -u N
) )  =  ( ( A ^ -u M
)  x.  ( A ^ -u N ) ) )
4438, 40, 42, 43syl3anc 1250 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ ( -u M  +  -u N
) )  =  ( ( A ^ -u M
)  x.  ( A ^ -u N ) ) )
4537, 44eqtrd 2238 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ -u ( M  +  N )
)  =  ( ( A ^ -u M
)  x.  ( A ^ -u N ) ) )
4645oveq2d 5960 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( 1  /  ( A ^ -u ( M  +  N ) ) )  =  ( 1  /  ( ( A ^ -u M )  x.  ( A ^ -u N ) ) ) )
47 1t1e1 9189 . . . . . . . . . . 11  |-  ( 1  x.  1 )  =  1
4847oveq1i 5954 . . . . . . . . . 10  |-  ( ( 1  x.  1 )  /  ( ( A ^ -u M )  x.  ( A ^ -u N ) ) )  =  ( 1  / 
( ( A ^ -u M )  x.  ( A ^ -u N ) ) )
4946, 48eqtr4di 2256 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( 1  /  ( A ^ -u ( M  +  N ) ) )  =  ( ( 1  x.  1 )  /  ( ( A ^ -u M )  x.  ( A ^ -u N ) ) ) )
50 expcl 10702 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  -u M  e.  NN0 )  ->  ( A ^ -u M
)  e.  CC )
5138, 40, 50syl2anc 411 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ -u M
)  e.  CC )
52 simp1r 1025 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  A #  0 )
5340nn0zd 9493 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u M  e.  ZZ )
54 expap0i 10716 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A #  0  /\  -u M  e.  ZZ )  ->  ( A ^ -u M ) #  0 )
5538, 52, 53, 54syl3anc 1250 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ -u M
) #  0 )
56 expcl 10702 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  -u N  e.  NN0 )  ->  ( A ^ -u N
)  e.  CC )
5738, 42, 56syl2anc 411 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ -u N
)  e.  CC )
5842nn0zd 9493 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  ZZ )
59 expap0i 10716 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A #  0  /\  -u N  e.  ZZ )  ->  ( A ^ -u N ) #  0 )
6038, 52, 58, 59syl3anc 1250 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ -u N
) #  0 )
61 ax-1cn 8018 . . . . . . . . . . 11  |-  1  e.  CC
62 divmuldivap 8785 . . . . . . . . . . 11  |-  ( ( ( 1  e.  CC  /\  1  e.  CC )  /\  ( ( ( A ^ -u M
)  e.  CC  /\  ( A ^ -u M
) #  0 )  /\  ( ( A ^ -u N )  e.  CC  /\  ( A ^ -u N
) #  0 ) ) )  ->  ( (
1  /  ( A ^ -u M ) )  x.  ( 1  /  ( A ^ -u N ) ) )  =  ( ( 1  x.  1 )  / 
( ( A ^ -u M )  x.  ( A ^ -u N ) ) ) )
6361, 61, 62mpanl12 436 . . . . . . . . . 10  |-  ( ( ( ( A ^ -u M )  e.  CC  /\  ( A ^ -u M
) #  0 )  /\  ( ( A ^ -u N )  e.  CC  /\  ( A ^ -u N
) #  0 ) )  ->  ( ( 1  /  ( A ^ -u M ) )  x.  ( 1  /  ( A ^ -u N ) ) )  =  ( ( 1  x.  1 )  /  ( ( A ^ -u M
)  x.  ( A ^ -u N ) ) ) )
6451, 55, 57, 60, 63syl22anc 1251 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( ( 1  / 
( A ^ -u M
) )  x.  (
1  /  ( A ^ -u N ) ) )  =  ( ( 1  x.  1 )  /  ( ( A ^ -u M
)  x.  ( A ^ -u N ) ) ) )
6549, 64eqtr4d 2241 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( 1  /  ( A ^ -u ( M  +  N ) ) )  =  ( ( 1  /  ( A ^ -u M ) )  x.  ( 1  /  ( A ^ -u N ) ) ) )
6633, 35addcld 8092 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( M  +  N
)  e.  CC )
6740, 42nn0addcld 9352 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( -u M  +  -u N )  e.  NN0 )
6836, 67eqeltrd 2282 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u ( M  +  N
)  e.  NN0 )
69 expineg2 10693 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( ( M  +  N )  e.  CC  /\  -u ( M  +  N
)  e.  NN0 )
)  ->  ( A ^ ( M  +  N ) )  =  ( 1  /  ( A ^ -u ( M  +  N ) ) ) )
7038, 52, 66, 68, 69syl22anc 1251 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ ( M  +  N )
)  =  ( 1  /  ( A ^ -u ( M  +  N
) ) ) )
71 expineg2 10693 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  CC  /\  -u M  e.  NN0 ) )  ->  ( A ^ M )  =  ( 1  /  ( A ^ -u M ) ) )
7238, 52, 33, 40, 71syl22anc 1251 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ M
)  =  ( 1  /  ( A ^ -u M ) ) )
73 expineg2 10693 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  CC  /\  -u N  e.  NN0 ) )  ->  ( A ^ N )  =  ( 1  /  ( A ^ -u N ) ) )
7438, 52, 35, 42, 73syl22anc 1251 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ N
)  =  ( 1  /  ( A ^ -u N ) ) )
7572, 74oveq12d 5962 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( ( A ^ M )  x.  ( A ^ N ) )  =  ( ( 1  /  ( A ^ -u M ) )  x.  ( 1  /  ( A ^ -u N ) ) ) )
7665, 70, 753eqtr4d 2248 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ ( M  +  N )
)  =  ( ( A ^ M )  x.  ( A ^ N ) ) )
77763expia 1208 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN ) )  ->  (
( N  e.  RR  /\  -u N  e.  NN )  ->  ( A ^
( M  +  N
) )  =  ( ( A ^ M
)  x.  ( A ^ N ) ) ) )
7831, 77jaodan 799 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  NN0  \/  ( M  e.  RR  /\  -u M  e.  NN ) ) )  -> 
( ( N  e.  RR  /\  -u N  e.  NN )  ->  ( A ^ ( M  +  N ) )  =  ( ( A ^ M )  x.  ( A ^ N ) ) ) )
798, 78jaod 719 . . . 4  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  NN0  \/  ( M  e.  RR  /\  -u M  e.  NN ) ) )  -> 
( ( N  e. 
NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ ( M  +  N )
)  =  ( ( A ^ M )  x.  ( A ^ N ) ) ) )
802, 79sylan2b 287 . . 3  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  ZZ )  ->  ( ( N  e. 
NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ ( M  +  N )
)  =  ( ( A ^ M )  x.  ( A ^ N ) ) ) )
811, 80biimtrid 152 . 2  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  ZZ )  ->  ( N  e.  ZZ  ->  ( A ^ ( M  +  N )
)  =  ( ( A ^ M )  x.  ( A ^ N ) ) ) )
8281impr 379 1  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( A ^ ( M  +  N ) )  =  ( ( A ^ M )  x.  ( A ^ N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 710    /\ w3a 981    = wceq 1373    e. wcel 2176   class class class wbr 4044  (class class class)co 5944   CCcc 7923   RRcr 7924   0cc0 7925   1c1 7926    + caddc 7928    x. cmul 7930   -ucneg 8244   # cap 8654    / cdiv 8745   NNcn 9036   NN0cn0 9295   ZZcz 9372   ^cexp 10683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-n0 9296  df-z 9373  df-uz 9649  df-seqfrec 10593  df-exp 10684
This theorem is referenced by:  m1expeven  10731  expsubap  10732  expp1zap  10733  pcaddlem  12662  expghmap  14369  lgseisenlem4  15550  lgsquadlem1  15554  lgsquad2lem1  15558
  Copyright terms: Public domain W3C validator