ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccshftri Unicode version

Theorem iccshftri 10152
Description: Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
iccshftri.1  |-  A  e.  RR
iccshftri.2  |-  B  e.  RR
iccshftri.3  |-  R  e.  RR
iccshftri.4  |-  ( A  +  R )  =  C
iccshftri.5  |-  ( B  +  R )  =  D
Assertion
Ref Expression
iccshftri  |-  ( X  e.  ( A [,] B )  ->  ( X  +  R )  e.  ( C [,] D
) )

Proof of Theorem iccshftri
StepHypRef Expression
1 iccshftri.1 . . . 4  |-  A  e.  RR
2 iccshftri.2 . . . 4  |-  B  e.  RR
3 iccssre 10112 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
41, 2, 3mp2an 426 . . 3  |-  ( A [,] B )  C_  RR
54sseli 3197 . 2  |-  ( X  e.  ( A [,] B )  ->  X  e.  RR )
6 iccshftri.3 . . . 4  |-  R  e.  RR
7 iccshftri.4 . . . . . 6  |-  ( A  +  R )  =  C
8 iccshftri.5 . . . . . 6  |-  ( B  +  R )  =  D
97, 8iccshftr 10151 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( X  e.  ( A [,] B )  <-> 
( X  +  R
)  e.  ( C [,] D ) ) )
101, 2, 9mpanl12 436 . . . 4  |-  ( ( X  e.  RR  /\  R  e.  RR )  ->  ( X  e.  ( A [,] B )  <-> 
( X  +  R
)  e.  ( C [,] D ) ) )
116, 10mpan2 425 . . 3  |-  ( X  e.  RR  ->  ( X  e.  ( A [,] B )  <->  ( X  +  R )  e.  ( C [,] D ) ) )
1211biimpd 144 . 2  |-  ( X  e.  RR  ->  ( X  e.  ( A [,] B )  ->  ( X  +  R )  e.  ( C [,] D
) ) )
135, 12mpcom 36 1  |-  ( X  e.  ( A [,] B )  ->  ( X  +  R )  e.  ( C [,] D
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178    C_ wss 3174  (class class class)co 5967   RRcr 7959    + caddc 7963   [,]cicc 10048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-po 4361  df-iso 4362  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-icc 10052
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator