ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccdili Unicode version

Theorem iccdili 10016
Description: Membership in a dilated interval. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
iccdili.1  |-  A  e.  RR
iccdili.2  |-  B  e.  RR
iccdili.3  |-  R  e.  RR+
iccdili.4  |-  ( A  x.  R )  =  C
iccdili.5  |-  ( B  x.  R )  =  D
Assertion
Ref Expression
iccdili  |-  ( X  e.  ( A [,] B )  ->  ( X  x.  R )  e.  ( C [,] D
) )

Proof of Theorem iccdili
StepHypRef Expression
1 iccdili.1 . . . 4  |-  A  e.  RR
2 iccdili.2 . . . 4  |-  B  e.  RR
3 iccssre 9972 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
41, 2, 3mp2an 426 . . 3  |-  ( A [,] B )  C_  RR
54sseli 3165 . 2  |-  ( X  e.  ( A [,] B )  ->  X  e.  RR )
6 iccdili.3 . . . 4  |-  R  e.  RR+
7 iccdili.4 . . . . . 6  |-  ( A  x.  R )  =  C
8 iccdili.5 . . . . . 6  |-  ( B  x.  R )  =  D
97, 8iccdil 10015 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR+ ) )  ->  ( X  e.  ( A [,] B )  <->  ( X  x.  R )  e.  ( C [,] D ) ) )
101, 2, 9mpanl12 436 . . . 4  |-  ( ( X  e.  RR  /\  R  e.  RR+ )  -> 
( X  e.  ( A [,] B )  <-> 
( X  x.  R
)  e.  ( C [,] D ) ) )
116, 10mpan2 425 . . 3  |-  ( X  e.  RR  ->  ( X  e.  ( A [,] B )  <->  ( X  x.  R )  e.  ( C [,] D ) ) )
1211biimpd 144 . 2  |-  ( X  e.  RR  ->  ( X  e.  ( A [,] B )  ->  ( X  x.  R )  e.  ( C [,] D
) ) )
135, 12mpcom 36 1  |-  ( X  e.  ( A [,] B )  ->  ( X  x.  R )  e.  ( C [,] D
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1363    e. wcel 2159    C_ wss 3143  (class class class)co 5890   RRcr 7827    x. cmul 7833   RR+crp 9670   [,]cicc 9908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2161  ax-14 2162  ax-ext 2170  ax-sep 4135  ax-pow 4188  ax-pr 4223  ax-un 4447  ax-setind 4550  ax-cnex 7919  ax-resscn 7920  ax-1cn 7921  ax-1re 7922  ax-icn 7923  ax-addcl 7924  ax-addrcl 7925  ax-mulcl 7926  ax-mulrcl 7927  ax-addcom 7928  ax-mulcom 7929  ax-addass 7930  ax-mulass 7931  ax-distr 7932  ax-i2m1 7933  ax-1rid 7935  ax-0id 7936  ax-rnegex 7937  ax-precex 7938  ax-cnre 7939  ax-pre-ltirr 7940  ax-pre-ltwlin 7941  ax-pre-lttrn 7942  ax-pre-ltadd 7944  ax-pre-mulgt0 7945
This theorem depends on definitions:  df-bi 117  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2040  df-mo 2041  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ne 2360  df-nel 2455  df-ral 2472  df-rex 2473  df-reu 2474  df-rab 2476  df-v 2753  df-sbc 2977  df-dif 3145  df-un 3147  df-in 3149  df-ss 3156  df-pw 3591  df-sn 3612  df-pr 3613  df-op 3615  df-uni 3824  df-br 4018  df-opab 4079  df-id 4307  df-po 4310  df-iso 4311  df-xp 4646  df-rel 4647  df-cnv 4648  df-co 4649  df-dm 4650  df-iota 5192  df-fun 5232  df-fv 5238  df-riota 5846  df-ov 5893  df-oprab 5894  df-mpo 5895  df-pnf 8011  df-mnf 8012  df-xr 8013  df-ltxr 8014  df-le 8015  df-sub 8147  df-neg 8148  df-rp 9671  df-icc 9912
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator