ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccdili Unicode version

Theorem iccdili 10121
Description: Membership in a dilated interval. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
iccdili.1  |-  A  e.  RR
iccdili.2  |-  B  e.  RR
iccdili.3  |-  R  e.  RR+
iccdili.4  |-  ( A  x.  R )  =  C
iccdili.5  |-  ( B  x.  R )  =  D
Assertion
Ref Expression
iccdili  |-  ( X  e.  ( A [,] B )  ->  ( X  x.  R )  e.  ( C [,] D
) )

Proof of Theorem iccdili
StepHypRef Expression
1 iccdili.1 . . . 4  |-  A  e.  RR
2 iccdili.2 . . . 4  |-  B  e.  RR
3 iccssre 10077 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
41, 2, 3mp2an 426 . . 3  |-  ( A [,] B )  C_  RR
54sseli 3189 . 2  |-  ( X  e.  ( A [,] B )  ->  X  e.  RR )
6 iccdili.3 . . . 4  |-  R  e.  RR+
7 iccdili.4 . . . . . 6  |-  ( A  x.  R )  =  C
8 iccdili.5 . . . . . 6  |-  ( B  x.  R )  =  D
97, 8iccdil 10120 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR+ ) )  ->  ( X  e.  ( A [,] B )  <->  ( X  x.  R )  e.  ( C [,] D ) ) )
101, 2, 9mpanl12 436 . . . 4  |-  ( ( X  e.  RR  /\  R  e.  RR+ )  -> 
( X  e.  ( A [,] B )  <-> 
( X  x.  R
)  e.  ( C [,] D ) ) )
116, 10mpan2 425 . . 3  |-  ( X  e.  RR  ->  ( X  e.  ( A [,] B )  <->  ( X  x.  R )  e.  ( C [,] D ) ) )
1211biimpd 144 . 2  |-  ( X  e.  RR  ->  ( X  e.  ( A [,] B )  ->  ( X  x.  R )  e.  ( C [,] D
) ) )
135, 12mpcom 36 1  |-  ( X  e.  ( A [,] B )  ->  ( X  x.  R )  e.  ( C [,] D
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176    C_ wss 3166  (class class class)co 5944   RRcr 7924    x. cmul 7930   RR+crp 9775   [,]cicc 10013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-ltadd 8041  ax-pre-mulgt0 8042
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-po 4343  df-iso 4344  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-rp 9776  df-icc 10017
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator