ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccshftli Unicode version

Theorem iccshftli 10161
Description: Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
iccshftli.1  |-  A  e.  RR
iccshftli.2  |-  B  e.  RR
iccshftli.3  |-  R  e.  RR
iccshftli.4  |-  ( A  -  R )  =  C
iccshftli.5  |-  ( B  -  R )  =  D
Assertion
Ref Expression
iccshftli  |-  ( X  e.  ( A [,] B )  ->  ( X  -  R )  e.  ( C [,] D
) )

Proof of Theorem iccshftli
StepHypRef Expression
1 iccshftli.1 . . . 4  |-  A  e.  RR
2 iccshftli.2 . . . 4  |-  B  e.  RR
3 iccssre 10119 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
41, 2, 3mp2an 426 . . 3  |-  ( A [,] B )  C_  RR
54sseli 3200 . 2  |-  ( X  e.  ( A [,] B )  ->  X  e.  RR )
6 iccshftli.3 . . . 4  |-  R  e.  RR
7 iccshftli.4 . . . . . 6  |-  ( A  -  R )  =  C
8 iccshftli.5 . . . . . 6  |-  ( B  -  R )  =  D
97, 8iccshftl 10160 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  -> 
( X  e.  ( A [,] B )  <-> 
( X  -  R
)  e.  ( C [,] D ) ) )
101, 2, 9mpanl12 436 . . . 4  |-  ( ( X  e.  RR  /\  R  e.  RR )  ->  ( X  e.  ( A [,] B )  <-> 
( X  -  R
)  e.  ( C [,] D ) ) )
116, 10mpan2 425 . . 3  |-  ( X  e.  RR  ->  ( X  e.  ( A [,] B )  <->  ( X  -  R )  e.  ( C [,] D ) ) )
1211biimpd 144 . 2  |-  ( X  e.  RR  ->  ( X  e.  ( A [,] B )  ->  ( X  -  R )  e.  ( C [,] D
) ) )
135, 12mpcom 36 1  |-  ( X  e.  ( A [,] B )  ->  ( X  -  R )  e.  ( C [,] D
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1375    e. wcel 2180    C_ wss 3177  (class class class)co 5974   RRcr 7966    - cmin 8285   [,]cicc 10055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-distr 8071  ax-i2m1 8072  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-id 4361  df-po 4364  df-iso 4365  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-iota 5254  df-fun 5296  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-icc 10059
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator