Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulexpzap | Unicode version |
Description: Integer exponentiation of a product. (Contributed by Jim Kingdon, 10-Jun-2020.) |
Ref | Expression |
---|---|
mulexpzap | # # |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elznn0nn 9226 | . . 3 | |
2 | simpl 108 | . . . . . 6 # | |
3 | simpl 108 | . . . . . 6 # | |
4 | 2, 3 | anim12i 336 | . . . . 5 # # |
5 | mulexp 10515 | . . . . . 6 | |
6 | 5 | 3expa 1198 | . . . . 5 |
7 | 4, 6 | sylan 281 | . . . 4 # # |
8 | simplll 528 | . . . . . . 7 # # | |
9 | simplrl 530 | . . . . . . 7 # # | |
10 | 8, 9 | mulcld 7940 | . . . . . 6 # # |
11 | simpllr 529 | . . . . . . 7 # # # | |
12 | simplrr 531 | . . . . . . 7 # # # | |
13 | 8, 9, 11, 12 | mulap0d 8576 | . . . . . 6 # # # |
14 | recn 7907 | . . . . . . 7 | |
15 | 14 | ad2antrl 487 | . . . . . 6 # # |
16 | nnnn0 9142 | . . . . . . 7 | |
17 | 16 | ad2antll 488 | . . . . . 6 # # |
18 | expineg2 10485 | . . . . . 6 # | |
19 | 10, 13, 15, 17, 18 | syl22anc 1234 | . . . . 5 # # |
20 | expineg2 10485 | . . . . . . . 8 # | |
21 | 8, 11, 15, 17, 20 | syl22anc 1234 | . . . . . . 7 # # |
22 | expineg2 10485 | . . . . . . . 8 # | |
23 | 9, 12, 15, 17, 22 | syl22anc 1234 | . . . . . . 7 # # |
24 | 21, 23 | oveq12d 5871 | . . . . . 6 # # |
25 | mulexp 10515 | . . . . . . . . . 10 | |
26 | 8, 9, 17, 25 | syl3anc 1233 | . . . . . . . . 9 # # |
27 | 26 | oveq2d 5869 | . . . . . . . 8 # # |
28 | 1t1e1 9030 | . . . . . . . . 9 | |
29 | 28 | oveq1i 5863 | . . . . . . . 8 |
30 | 27, 29 | eqtr4di 2221 | . . . . . . 7 # # |
31 | expcl 10494 | . . . . . . . . 9 | |
32 | 8, 17, 31 | syl2anc 409 | . . . . . . . 8 # # |
33 | nnz 9231 | . . . . . . . . . 10 | |
34 | 33 | ad2antll 488 | . . . . . . . . 9 # # |
35 | expap0i 10508 | . . . . . . . . 9 # # | |
36 | 8, 11, 34, 35 | syl3anc 1233 | . . . . . . . 8 # # # |
37 | expcl 10494 | . . . . . . . . 9 | |
38 | 9, 17, 37 | syl2anc 409 | . . . . . . . 8 # # |
39 | expap0i 10508 | . . . . . . . . 9 # # | |
40 | 9, 12, 34, 39 | syl3anc 1233 | . . . . . . . 8 # # # |
41 | ax-1cn 7867 | . . . . . . . . 9 | |
42 | divmuldivap 8629 | . . . . . . . . 9 # # | |
43 | 41, 41, 42 | mpanl12 434 | . . . . . . . 8 # # |
44 | 32, 36, 38, 40, 43 | syl22anc 1234 | . . . . . . 7 # # |
45 | 30, 44 | eqtr4d 2206 | . . . . . 6 # # |
46 | 24, 45 | eqtr4d 2206 | . . . . 5 # # |
47 | 19, 46 | eqtr4d 2206 | . . . 4 # # |
48 | 7, 47 | jaodan 792 | . . 3 # # |
49 | 1, 48 | sylan2b 285 | . 2 # # |
50 | 49 | 3impa 1189 | 1 # # |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 703 w3a 973 wceq 1348 wcel 2141 class class class wbr 3989 (class class class)co 5853 cc 7772 cr 7773 cc0 7774 c1 7775 cmul 7779 cneg 8091 # cap 8500 cdiv 8589 cn 8878 cn0 9135 cz 9212 cexp 10475 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-n0 9136 df-z 9213 df-uz 9488 df-seqfrec 10402 df-exp 10476 |
This theorem is referenced by: exprecap 10517 |
Copyright terms: Public domain | W3C validator |