Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulexpzap | Unicode version |
Description: Integer exponentiation of a product. (Contributed by Jim Kingdon, 10-Jun-2020.) |
Ref | Expression |
---|---|
mulexpzap | # # |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elznn0nn 9213 | . . 3 | |
2 | simpl 108 | . . . . . 6 # | |
3 | simpl 108 | . . . . . 6 # | |
4 | 2, 3 | anim12i 336 | . . . . 5 # # |
5 | mulexp 10502 | . . . . . 6 | |
6 | 5 | 3expa 1198 | . . . . 5 |
7 | 4, 6 | sylan 281 | . . . 4 # # |
8 | simplll 528 | . . . . . . 7 # # | |
9 | simplrl 530 | . . . . . . 7 # # | |
10 | 8, 9 | mulcld 7927 | . . . . . 6 # # |
11 | simpllr 529 | . . . . . . 7 # # # | |
12 | simplrr 531 | . . . . . . 7 # # # | |
13 | 8, 9, 11, 12 | mulap0d 8563 | . . . . . 6 # # # |
14 | recn 7894 | . . . . . . 7 | |
15 | 14 | ad2antrl 487 | . . . . . 6 # # |
16 | nnnn0 9129 | . . . . . . 7 | |
17 | 16 | ad2antll 488 | . . . . . 6 # # |
18 | expineg2 10472 | . . . . . 6 # | |
19 | 10, 13, 15, 17, 18 | syl22anc 1234 | . . . . 5 # # |
20 | expineg2 10472 | . . . . . . . 8 # | |
21 | 8, 11, 15, 17, 20 | syl22anc 1234 | . . . . . . 7 # # |
22 | expineg2 10472 | . . . . . . . 8 # | |
23 | 9, 12, 15, 17, 22 | syl22anc 1234 | . . . . . . 7 # # |
24 | 21, 23 | oveq12d 5868 | . . . . . 6 # # |
25 | mulexp 10502 | . . . . . . . . . 10 | |
26 | 8, 9, 17, 25 | syl3anc 1233 | . . . . . . . . 9 # # |
27 | 26 | oveq2d 5866 | . . . . . . . 8 # # |
28 | 1t1e1 9017 | . . . . . . . . 9 | |
29 | 28 | oveq1i 5860 | . . . . . . . 8 |
30 | 27, 29 | eqtr4di 2221 | . . . . . . 7 # # |
31 | expcl 10481 | . . . . . . . . 9 | |
32 | 8, 17, 31 | syl2anc 409 | . . . . . . . 8 # # |
33 | nnz 9218 | . . . . . . . . . 10 | |
34 | 33 | ad2antll 488 | . . . . . . . . 9 # # |
35 | expap0i 10495 | . . . . . . . . 9 # # | |
36 | 8, 11, 34, 35 | syl3anc 1233 | . . . . . . . 8 # # # |
37 | expcl 10481 | . . . . . . . . 9 | |
38 | 9, 17, 37 | syl2anc 409 | . . . . . . . 8 # # |
39 | expap0i 10495 | . . . . . . . . 9 # # | |
40 | 9, 12, 34, 39 | syl3anc 1233 | . . . . . . . 8 # # # |
41 | ax-1cn 7854 | . . . . . . . . 9 | |
42 | divmuldivap 8616 | . . . . . . . . 9 # # | |
43 | 41, 41, 42 | mpanl12 434 | . . . . . . . 8 # # |
44 | 32, 36, 38, 40, 43 | syl22anc 1234 | . . . . . . 7 # # |
45 | 30, 44 | eqtr4d 2206 | . . . . . 6 # # |
46 | 24, 45 | eqtr4d 2206 | . . . . 5 # # |
47 | 19, 46 | eqtr4d 2206 | . . . 4 # # |
48 | 7, 47 | jaodan 792 | . . 3 # # |
49 | 1, 48 | sylan2b 285 | . 2 # # |
50 | 49 | 3impa 1189 | 1 # # |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 703 w3a 973 wceq 1348 wcel 2141 class class class wbr 3987 (class class class)co 5850 cc 7759 cr 7760 cc0 7761 c1 7762 cmul 7766 cneg 8078 # cap 8487 cdiv 8576 cn 8865 cn0 9122 cz 9199 cexp 10462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-mulrcl 7860 ax-addcom 7861 ax-mulcom 7862 ax-addass 7863 ax-mulass 7864 ax-distr 7865 ax-i2m1 7866 ax-0lt1 7867 ax-1rid 7868 ax-0id 7869 ax-rnegex 7870 ax-precex 7871 ax-cnre 7872 ax-pre-ltirr 7873 ax-pre-ltwlin 7874 ax-pre-lttrn 7875 ax-pre-apti 7876 ax-pre-ltadd 7877 ax-pre-mulgt0 7878 ax-pre-mulext 7879 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3526 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-po 4279 df-iso 4280 df-iord 4349 df-on 4351 df-ilim 4352 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-1st 6116 df-2nd 6117 df-recs 6281 df-frec 6367 df-pnf 7943 df-mnf 7944 df-xr 7945 df-ltxr 7946 df-le 7947 df-sub 8079 df-neg 8080 df-reap 8481 df-ap 8488 df-div 8577 df-inn 8866 df-n0 9123 df-z 9200 df-uz 9475 df-seqfrec 10389 df-exp 10463 |
This theorem is referenced by: exprecap 10504 |
Copyright terms: Public domain | W3C validator |