ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulexpzap Unicode version

Theorem mulexpzap 10495
Description: Integer exponentiation of a product. (Contributed by Jim Kingdon, 10-Jun-2020.)
Assertion
Ref Expression
mulexpzap  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 )  /\  N  e.  ZZ )  ->  ( ( A  x.  B ) ^ N
)  =  ( ( A ^ N )  x.  ( B ^ N ) ) )

Proof of Theorem mulexpzap
StepHypRef Expression
1 elznn0nn 9205 . . 3  |-  ( N  e.  ZZ  <->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
2 simpl 108 . . . . . 6  |-  ( ( A  e.  CC  /\  A #  0 )  ->  A  e.  CC )
3 simpl 108 . . . . . 6  |-  ( ( B  e.  CC  /\  B #  0 )  ->  B  e.  CC )
42, 3anim12i 336 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  ->  ( A  e.  CC  /\  B  e.  CC ) )
5 mulexp 10494 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  ->  (
( A  x.  B
) ^ N )  =  ( ( A ^ N )  x.  ( B ^ N
) ) )
653expa 1193 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  N  e.  NN0 )  ->  ( ( A  x.  B ) ^ N )  =  ( ( A ^ N
)  x.  ( B ^ N ) ) )
74, 6sylan 281 . . . 4  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  N  e.  NN0 )  -> 
( ( A  x.  B ) ^ N
)  =  ( ( A ^ N )  x.  ( B ^ N ) ) )
8 simplll 523 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  A  e.  CC )
9 simplrl 525 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  B  e.  CC )
108, 9mulcld 7919 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( A  x.  B )  e.  CC )
11 simpllr 524 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  A #  0 )
12 simplrr 526 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  B #  0 )
138, 9, 11, 12mulap0d 8555 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( A  x.  B ) #  0 )
14 recn 7886 . . . . . . 7  |-  ( N  e.  RR  ->  N  e.  CC )
1514ad2antrl 482 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  N  e.  CC )
16 nnnn0 9121 . . . . . . 7  |-  ( -u N  e.  NN  ->  -u N  e.  NN0 )
1716ad2antll 483 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  NN0 )
18 expineg2 10464 . . . . . 6  |-  ( ( ( ( A  x.  B )  e.  CC  /\  ( A  x.  B
) #  0 )  /\  ( N  e.  CC  /\  -u N  e.  NN0 ) )  ->  (
( A  x.  B
) ^ N )  =  ( 1  / 
( ( A  x.  B ) ^ -u N
) ) )
1910, 13, 15, 17, 18syl22anc 1229 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
( A  x.  B
) ^ N )  =  ( 1  / 
( ( A  x.  B ) ^ -u N
) ) )
20 expineg2 10464 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  CC  /\  -u N  e.  NN0 ) )  ->  ( A ^ N )  =  ( 1  /  ( A ^ -u N ) ) )
218, 11, 15, 17, 20syl22anc 1229 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( A ^ N )  =  ( 1  /  ( A ^ -u N ) ) )
22 expineg2 10464 . . . . . . . 8  |-  ( ( ( B  e.  CC  /\  B #  0 )  /\  ( N  e.  CC  /\  -u N  e.  NN0 ) )  ->  ( B ^ N )  =  ( 1  /  ( B ^ -u N ) ) )
239, 12, 15, 17, 22syl22anc 1229 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( B ^ N )  =  ( 1  /  ( B ^ -u N ) ) )
2421, 23oveq12d 5860 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
( A ^ N
)  x.  ( B ^ N ) )  =  ( ( 1  /  ( A ^ -u N ) )  x.  ( 1  /  ( B ^ -u N ) ) ) )
25 mulexp 10494 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  -u N  e.  NN0 )  ->  (
( A  x.  B
) ^ -u N
)  =  ( ( A ^ -u N
)  x.  ( B ^ -u N ) ) )
268, 9, 17, 25syl3anc 1228 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
( A  x.  B
) ^ -u N
)  =  ( ( A ^ -u N
)  x.  ( B ^ -u N ) ) )
2726oveq2d 5858 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
1  /  ( ( A  x.  B ) ^ -u N ) )  =  ( 1  /  ( ( A ^ -u N )  x.  ( B ^ -u N ) ) ) )
28 1t1e1 9009 . . . . . . . . 9  |-  ( 1  x.  1 )  =  1
2928oveq1i 5852 . . . . . . . 8  |-  ( ( 1  x.  1 )  /  ( ( A ^ -u N )  x.  ( B ^ -u N ) ) )  =  ( 1  / 
( ( A ^ -u N )  x.  ( B ^ -u N ) ) )
3027, 29eqtr4di 2217 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
1  /  ( ( A  x.  B ) ^ -u N ) )  =  ( ( 1  x.  1 )  /  ( ( A ^ -u N )  x.  ( B ^ -u N ) ) ) )
31 expcl 10473 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  -u N  e.  NN0 )  ->  ( A ^ -u N
)  e.  CC )
328, 17, 31syl2anc 409 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( A ^ -u N )  e.  CC )
33 nnz 9210 . . . . . . . . . 10  |-  ( -u N  e.  NN  ->  -u N  e.  ZZ )
3433ad2antll 483 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  ZZ )
35 expap0i 10487 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A #  0  /\  -u N  e.  ZZ )  ->  ( A ^ -u N ) #  0 )
368, 11, 34, 35syl3anc 1228 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( A ^ -u N ) #  0 )
37 expcl 10473 . . . . . . . . 9  |-  ( ( B  e.  CC  /\  -u N  e.  NN0 )  ->  ( B ^ -u N
)  e.  CC )
389, 17, 37syl2anc 409 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( B ^ -u N )  e.  CC )
39 expap0i 10487 . . . . . . . . 9  |-  ( ( B  e.  CC  /\  B #  0  /\  -u N  e.  ZZ )  ->  ( B ^ -u N ) #  0 )
409, 12, 34, 39syl3anc 1228 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( B ^ -u N ) #  0 )
41 ax-1cn 7846 . . . . . . . . 9  |-  1  e.  CC
42 divmuldivap 8608 . . . . . . . . 9  |-  ( ( ( 1  e.  CC  /\  1  e.  CC )  /\  ( ( ( A ^ -u N
)  e.  CC  /\  ( A ^ -u N
) #  0 )  /\  ( ( B ^ -u N )  e.  CC  /\  ( B ^ -u N
) #  0 ) ) )  ->  ( (
1  /  ( A ^ -u N ) )  x.  ( 1  /  ( B ^ -u N ) ) )  =  ( ( 1  x.  1 )  / 
( ( A ^ -u N )  x.  ( B ^ -u N ) ) ) )
4341, 41, 42mpanl12 433 . . . . . . . 8  |-  ( ( ( ( A ^ -u N )  e.  CC  /\  ( A ^ -u N
) #  0 )  /\  ( ( B ^ -u N )  e.  CC  /\  ( B ^ -u N
) #  0 ) )  ->  ( ( 1  /  ( A ^ -u N ) )  x.  ( 1  /  ( B ^ -u N ) ) )  =  ( ( 1  x.  1 )  /  ( ( A ^ -u N
)  x.  ( B ^ -u N ) ) ) )
4432, 36, 38, 40, 43syl22anc 1229 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
( 1  /  ( A ^ -u N ) )  x.  ( 1  /  ( B ^ -u N ) ) )  =  ( ( 1  x.  1 )  / 
( ( A ^ -u N )  x.  ( B ^ -u N ) ) ) )
4530, 44eqtr4d 2201 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
1  /  ( ( A  x.  B ) ^ -u N ) )  =  ( ( 1  /  ( A ^ -u N ) )  x.  ( 1  /  ( B ^ -u N ) ) ) )
4624, 45eqtr4d 2201 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
( A ^ N
)  x.  ( B ^ N ) )  =  ( 1  / 
( ( A  x.  B ) ^ -u N
) ) )
4719, 46eqtr4d 2201 . . . 4  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
( A  x.  B
) ^ N )  =  ( ( A ^ N )  x.  ( B ^ N
) ) )
487, 47jaodan 787 . . 3  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )  -> 
( ( A  x.  B ) ^ N
)  =  ( ( A ^ N )  x.  ( B ^ N ) ) )
491, 48sylan2b 285 . 2  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  /\  N  e.  ZZ )  ->  ( ( A  x.  B ) ^ N
)  =  ( ( A ^ N )  x.  ( B ^ N ) ) )
50493impa 1184 1  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 )  /\  N  e.  ZZ )  ->  ( ( A  x.  B ) ^ N
)  =  ( ( A ^ N )  x.  ( B ^ N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 698    /\ w3a 968    = wceq 1343    e. wcel 2136   class class class wbr 3982  (class class class)co 5842   CCcc 7751   RRcr 7752   0cc0 7753   1c1 7754    x. cmul 7758   -ucneg 8070   # cap 8479    / cdiv 8568   NNcn 8857   NN0cn0 9114   ZZcz 9191   ^cexp 10454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-seqfrec 10381  df-exp 10455
This theorem is referenced by:  exprecap  10496
  Copyright terms: Public domain W3C validator