Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulexpzap | Unicode version |
Description: Integer exponentiation of a product. (Contributed by Jim Kingdon, 10-Jun-2020.) |
Ref | Expression |
---|---|
mulexpzap | # # |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elznn0nn 9205 | . . 3 | |
2 | simpl 108 | . . . . . 6 # | |
3 | simpl 108 | . . . . . 6 # | |
4 | 2, 3 | anim12i 336 | . . . . 5 # # |
5 | mulexp 10494 | . . . . . 6 | |
6 | 5 | 3expa 1193 | . . . . 5 |
7 | 4, 6 | sylan 281 | . . . 4 # # |
8 | simplll 523 | . . . . . . 7 # # | |
9 | simplrl 525 | . . . . . . 7 # # | |
10 | 8, 9 | mulcld 7919 | . . . . . 6 # # |
11 | simpllr 524 | . . . . . . 7 # # # | |
12 | simplrr 526 | . . . . . . 7 # # # | |
13 | 8, 9, 11, 12 | mulap0d 8555 | . . . . . 6 # # # |
14 | recn 7886 | . . . . . . 7 | |
15 | 14 | ad2antrl 482 | . . . . . 6 # # |
16 | nnnn0 9121 | . . . . . . 7 | |
17 | 16 | ad2antll 483 | . . . . . 6 # # |
18 | expineg2 10464 | . . . . . 6 # | |
19 | 10, 13, 15, 17, 18 | syl22anc 1229 | . . . . 5 # # |
20 | expineg2 10464 | . . . . . . . 8 # | |
21 | 8, 11, 15, 17, 20 | syl22anc 1229 | . . . . . . 7 # # |
22 | expineg2 10464 | . . . . . . . 8 # | |
23 | 9, 12, 15, 17, 22 | syl22anc 1229 | . . . . . . 7 # # |
24 | 21, 23 | oveq12d 5860 | . . . . . 6 # # |
25 | mulexp 10494 | . . . . . . . . . 10 | |
26 | 8, 9, 17, 25 | syl3anc 1228 | . . . . . . . . 9 # # |
27 | 26 | oveq2d 5858 | . . . . . . . 8 # # |
28 | 1t1e1 9009 | . . . . . . . . 9 | |
29 | 28 | oveq1i 5852 | . . . . . . . 8 |
30 | 27, 29 | eqtr4di 2217 | . . . . . . 7 # # |
31 | expcl 10473 | . . . . . . . . 9 | |
32 | 8, 17, 31 | syl2anc 409 | . . . . . . . 8 # # |
33 | nnz 9210 | . . . . . . . . . 10 | |
34 | 33 | ad2antll 483 | . . . . . . . . 9 # # |
35 | expap0i 10487 | . . . . . . . . 9 # # | |
36 | 8, 11, 34, 35 | syl3anc 1228 | . . . . . . . 8 # # # |
37 | expcl 10473 | . . . . . . . . 9 | |
38 | 9, 17, 37 | syl2anc 409 | . . . . . . . 8 # # |
39 | expap0i 10487 | . . . . . . . . 9 # # | |
40 | 9, 12, 34, 39 | syl3anc 1228 | . . . . . . . 8 # # # |
41 | ax-1cn 7846 | . . . . . . . . 9 | |
42 | divmuldivap 8608 | . . . . . . . . 9 # # | |
43 | 41, 41, 42 | mpanl12 433 | . . . . . . . 8 # # |
44 | 32, 36, 38, 40, 43 | syl22anc 1229 | . . . . . . 7 # # |
45 | 30, 44 | eqtr4d 2201 | . . . . . 6 # # |
46 | 24, 45 | eqtr4d 2201 | . . . . 5 # # |
47 | 19, 46 | eqtr4d 2201 | . . . 4 # # |
48 | 7, 47 | jaodan 787 | . . 3 # # |
49 | 1, 48 | sylan2b 285 | . 2 # # |
50 | 49 | 3impa 1184 | 1 # # |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 698 w3a 968 wceq 1343 wcel 2136 class class class wbr 3982 (class class class)co 5842 cc 7751 cr 7752 cc0 7753 c1 7754 cmul 7758 cneg 8070 # cap 8479 cdiv 8568 cn 8857 cn0 9114 cz 9191 cexp 10454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 df-seqfrec 10381 df-exp 10455 |
This theorem is referenced by: exprecap 10496 |
Copyright terms: Public domain | W3C validator |