| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulexpzap | Unicode version | ||
| Description: Integer exponentiation of a product. (Contributed by Jim Kingdon, 10-Jun-2020.) |
| Ref | Expression |
|---|---|
| mulexpzap |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elznn0nn 9421 |
. . 3
| |
| 2 | simpl 109 |
. . . . . 6
| |
| 3 | simpl 109 |
. . . . . 6
| |
| 4 | 2, 3 | anim12i 338 |
. . . . 5
|
| 5 | mulexp 10760 |
. . . . . 6
| |
| 6 | 5 | 3expa 1206 |
. . . . 5
|
| 7 | 4, 6 | sylan 283 |
. . . 4
|
| 8 | simplll 533 |
. . . . . . 7
| |
| 9 | simplrl 535 |
. . . . . . 7
| |
| 10 | 8, 9 | mulcld 8128 |
. . . . . 6
|
| 11 | simpllr 534 |
. . . . . . 7
| |
| 12 | simplrr 536 |
. . . . . . 7
| |
| 13 | 8, 9, 11, 12 | mulap0d 8766 |
. . . . . 6
|
| 14 | recn 8093 |
. . . . . . 7
| |
| 15 | 14 | ad2antrl 490 |
. . . . . 6
|
| 16 | nnnn0 9337 |
. . . . . . 7
| |
| 17 | 16 | ad2antll 491 |
. . . . . 6
|
| 18 | expineg2 10730 |
. . . . . 6
| |
| 19 | 10, 13, 15, 17, 18 | syl22anc 1251 |
. . . . 5
|
| 20 | expineg2 10730 |
. . . . . . . 8
| |
| 21 | 8, 11, 15, 17, 20 | syl22anc 1251 |
. . . . . . 7
|
| 22 | expineg2 10730 |
. . . . . . . 8
| |
| 23 | 9, 12, 15, 17, 22 | syl22anc 1251 |
. . . . . . 7
|
| 24 | 21, 23 | oveq12d 5985 |
. . . . . 6
|
| 25 | mulexp 10760 |
. . . . . . . . . 10
| |
| 26 | 8, 9, 17, 25 | syl3anc 1250 |
. . . . . . . . 9
|
| 27 | 26 | oveq2d 5983 |
. . . . . . . 8
|
| 28 | 1t1e1 9224 |
. . . . . . . . 9
| |
| 29 | 28 | oveq1i 5977 |
. . . . . . . 8
|
| 30 | 27, 29 | eqtr4di 2258 |
. . . . . . 7
|
| 31 | expcl 10739 |
. . . . . . . . 9
| |
| 32 | 8, 17, 31 | syl2anc 411 |
. . . . . . . 8
|
| 33 | nnz 9426 |
. . . . . . . . . 10
| |
| 34 | 33 | ad2antll 491 |
. . . . . . . . 9
|
| 35 | expap0i 10753 |
. . . . . . . . 9
| |
| 36 | 8, 11, 34, 35 | syl3anc 1250 |
. . . . . . . 8
|
| 37 | expcl 10739 |
. . . . . . . . 9
| |
| 38 | 9, 17, 37 | syl2anc 411 |
. . . . . . . 8
|
| 39 | expap0i 10753 |
. . . . . . . . 9
| |
| 40 | 9, 12, 34, 39 | syl3anc 1250 |
. . . . . . . 8
|
| 41 | ax-1cn 8053 |
. . . . . . . . 9
| |
| 42 | divmuldivap 8820 |
. . . . . . . . 9
| |
| 43 | 41, 41, 42 | mpanl12 436 |
. . . . . . . 8
|
| 44 | 32, 36, 38, 40, 43 | syl22anc 1251 |
. . . . . . 7
|
| 45 | 30, 44 | eqtr4d 2243 |
. . . . . 6
|
| 46 | 24, 45 | eqtr4d 2243 |
. . . . 5
|
| 47 | 19, 46 | eqtr4d 2243 |
. . . 4
|
| 48 | 7, 47 | jaodan 799 |
. . 3
|
| 49 | 1, 48 | sylan2b 287 |
. 2
|
| 50 | 49 | 3impa 1197 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-n0 9331 df-z 9408 df-uz 9684 df-seqfrec 10630 df-exp 10721 |
| This theorem is referenced by: exprecap 10762 |
| Copyright terms: Public domain | W3C validator |