ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pitoregt0 Unicode version

Theorem pitoregt0 7933
Description: Embedding from  N. to  RR yields a number greater than zero. (Contributed by Jim Kingdon, 15-Jul-2021.)
Assertion
Ref Expression
pitoregt0  |-  ( N  e.  N.  ->  0  <RR 
<. [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
Distinct variable group:    N, l, u

Proof of Theorem pitoregt0
StepHypRef Expression
1 1pr 7638 . . . . . 6  |-  1P  e.  P.
2 addclpr 7621 . . . . . 6  |-  ( ( 1P  e.  P.  /\  1P  e.  P. )  -> 
( 1P  +P.  1P )  e.  P. )
31, 1, 2mp2an 426 . . . . 5  |-  ( 1P 
+P.  1P )  e.  P.
4 nnprlu 7637 . . . . 5  |-  ( N  e.  N.  ->  <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  e.  P. )
5 ltaddpr 7681 . . . . 5  |-  ( ( ( 1P  +P.  1P )  e.  P.  /\  <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  e.  P. )  -> 
( 1P  +P.  1P )  <P  ( ( 1P 
+P.  1P )  +P.  <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >. ) )
63, 4, 5sylancr 414 . . . 4  |-  ( N  e.  N.  ->  ( 1P  +P.  1P )  <P 
( ( 1P  +P.  1P )  +P.  <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >. ) )
71a1i 9 . . . . . 6  |-  ( N  e.  N.  ->  1P  e.  P. )
8 addassprg 7663 . . . . . 6  |-  ( ( 1P  e.  P.  /\  1P  e.  P.  /\  <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  e.  P. )  -> 
( ( 1P  +P.  1P )  +P.  <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >. )  =  ( 1P  +P.  ( 1P 
+P.  <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >. ) ) )
97, 7, 4, 8syl3anc 1249 . . . . 5  |-  ( N  e.  N.  ->  (
( 1P  +P.  1P )  +P.  <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >. )  =  ( 1P 
+P.  ( 1P  +P.  <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >. ) ) )
10 addcomprg 7662 . . . . . . 7  |-  ( ( 1P  e.  P.  /\  <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  e.  P. )  -> 
( 1P  +P.  <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >. )  =  ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) )
111, 4, 10sylancr 414 . . . . . 6  |-  ( N  e.  N.  ->  ( 1P  +P.  <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >. )  =  ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) )
1211oveq2d 5941 . . . . 5  |-  ( N  e.  N.  ->  ( 1P  +P.  ( 1P  +P.  <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >. ) )  =  ( 1P  +P.  ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ) )
139, 12eqtrd 2229 . . . 4  |-  ( N  e.  N.  ->  (
( 1P  +P.  1P )  +P.  <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >. )  =  ( 1P 
+P.  ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )
) )
146, 13breqtrd 4060 . . 3  |-  ( N  e.  N.  ->  ( 1P  +P.  1P )  <P 
( 1P  +P.  ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ) )
15 addclpr 7621 . . . . 5  |-  ( (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  e.  P.  /\  1P  e.  P. )  ->  ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e. 
P. )
164, 1, 15sylancl 413 . . . 4  |-  ( N  e.  N.  ->  ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e. 
P. )
17 ltsrprg 7831 . . . . 5  |-  ( ( ( 1P  e.  P.  /\  1P  e.  P. )  /\  ( ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e.  P.  /\  1P  e.  P. ) )  ->  ( [ <. 1P ,  1P >. ]  ~R  <R  [ <. (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  <->  ( 1P  +P.  1P )  <P  ( 1P  +P.  ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )
) ) )
181, 1, 17mpanl12 436 . . . 4  |-  ( ( ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e. 
P.  /\  1P  e.  P. )  ->  ( [
<. 1P ,  1P >. ]  ~R  <R  [ <. ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  <->  ( 1P  +P.  1P )  <P  ( 1P  +P.  ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )
) ) )
1916, 1, 18sylancl 413 . . 3  |-  ( N  e.  N.  ->  ( [ <. 1P ,  1P >. ]  ~R  <R  [ <. (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  <->  ( 1P  +P.  1P )  <P  ( 1P  +P.  ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )
) ) )
2014, 19mpbird 167 . 2  |-  ( N  e.  N.  ->  [ <. 1P ,  1P >. ]  ~R  <R  [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
21 df-0 7903 . . . 4  |-  0  =  <. 0R ,  0R >.
2221breq1i 4041 . . 3  |-  ( 0 
<RR  <. [ <. ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. 
<-> 
<. 0R ,  0R >.  <RR  <. [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
23 ltresr 7923 . . 3  |-  ( <. 0R ,  0R >.  <RR  <. [ <. (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. 
<->  0R  <R  [ <. ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
24 df-0r 7815 . . . 4  |-  0R  =  [ <. 1P ,  1P >. ]  ~R
2524breq1i 4041 . . 3  |-  ( 0R 
<R  [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  <->  [ <. 1P ,  1P >. ]  ~R  <R  [
<. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
2622, 23, 253bitri 206 . 2  |-  ( 0 
<RR  <. [ <. ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. 
<->  [ <. 1P ,  1P >. ]  ~R  <R  [ <. (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
2720, 26sylibr 134 1  |-  ( N  e.  N.  ->  0  <RR 
<. [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   {cab 2182   <.cop 3626   class class class wbr 4034  (class class class)co 5925   1oc1o 6476   [cec 6599   N.cnpi 7356    ~Q ceq 7363    <Q cltq 7369   P.cnp 7375   1Pc1p 7376    +P. cpp 7377    <P cltp 7379    ~R cer 7380   0Rc0r 7382    <R cltr 7387   0cc0 7896    <RR cltrr 7900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-1o 6483  df-2o 6484  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-pli 7389  df-mi 7390  df-lti 7391  df-plpq 7428  df-mpq 7429  df-enq 7431  df-nqqs 7432  df-plqqs 7433  df-mqqs 7434  df-1nqqs 7435  df-rq 7436  df-ltnqqs 7437  df-enq0 7508  df-nq0 7509  df-0nq0 7510  df-plq0 7511  df-mq0 7512  df-inp 7550  df-i1p 7551  df-iplp 7552  df-iltp 7554  df-enr 7810  df-nr 7811  df-ltr 7814  df-0r 7815  df-0 7903  df-r 7906  df-lt 7909
This theorem is referenced by:  recriota  7974
  Copyright terms: Public domain W3C validator