ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pitoregt0 Unicode version

Theorem pitoregt0 7811
Description: Embedding from  N. to  RR yields a number greater than zero. (Contributed by Jim Kingdon, 15-Jul-2021.)
Assertion
Ref Expression
pitoregt0  |-  ( N  e.  N.  ->  0  <RR 
<. [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
Distinct variable group:    N, l, u

Proof of Theorem pitoregt0
StepHypRef Expression
1 1pr 7516 . . . . . 6  |-  1P  e.  P.
2 addclpr 7499 . . . . . 6  |-  ( ( 1P  e.  P.  /\  1P  e.  P. )  -> 
( 1P  +P.  1P )  e.  P. )
31, 1, 2mp2an 424 . . . . 5  |-  ( 1P 
+P.  1P )  e.  P.
4 nnprlu 7515 . . . . 5  |-  ( N  e.  N.  ->  <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  e.  P. )
5 ltaddpr 7559 . . . . 5  |-  ( ( ( 1P  +P.  1P )  e.  P.  /\  <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  e.  P. )  -> 
( 1P  +P.  1P )  <P  ( ( 1P 
+P.  1P )  +P.  <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >. ) )
63, 4, 5sylancr 412 . . . 4  |-  ( N  e.  N.  ->  ( 1P  +P.  1P )  <P 
( ( 1P  +P.  1P )  +P.  <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >. ) )
71a1i 9 . . . . . 6  |-  ( N  e.  N.  ->  1P  e.  P. )
8 addassprg 7541 . . . . . 6  |-  ( ( 1P  e.  P.  /\  1P  e.  P.  /\  <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  e.  P. )  -> 
( ( 1P  +P.  1P )  +P.  <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >. )  =  ( 1P  +P.  ( 1P 
+P.  <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >. ) ) )
97, 7, 4, 8syl3anc 1233 . . . . 5  |-  ( N  e.  N.  ->  (
( 1P  +P.  1P )  +P.  <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >. )  =  ( 1P 
+P.  ( 1P  +P.  <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >. ) ) )
10 addcomprg 7540 . . . . . . 7  |-  ( ( 1P  e.  P.  /\  <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  e.  P. )  -> 
( 1P  +P.  <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >. )  =  ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) )
111, 4, 10sylancr 412 . . . . . 6  |-  ( N  e.  N.  ->  ( 1P  +P.  <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >. )  =  ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) )
1211oveq2d 5869 . . . . 5  |-  ( N  e.  N.  ->  ( 1P  +P.  ( 1P  +P.  <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >. ) )  =  ( 1P  +P.  ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ) )
139, 12eqtrd 2203 . . . 4  |-  ( N  e.  N.  ->  (
( 1P  +P.  1P )  +P.  <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >. )  =  ( 1P 
+P.  ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )
) )
146, 13breqtrd 4015 . . 3  |-  ( N  e.  N.  ->  ( 1P  +P.  1P )  <P 
( 1P  +P.  ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ) )
15 addclpr 7499 . . . . 5  |-  ( (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  e.  P.  /\  1P  e.  P. )  ->  ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e. 
P. )
164, 1, 15sylancl 411 . . . 4  |-  ( N  e.  N.  ->  ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e. 
P. )
17 ltsrprg 7709 . . . . 5  |-  ( ( ( 1P  e.  P.  /\  1P  e.  P. )  /\  ( ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e.  P.  /\  1P  e.  P. ) )  ->  ( [ <. 1P ,  1P >. ]  ~R  <R  [ <. (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  <->  ( 1P  +P.  1P )  <P  ( 1P  +P.  ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )
) ) )
181, 1, 17mpanl12 434 . . . 4  |-  ( ( ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e. 
P.  /\  1P  e.  P. )  ->  ( [
<. 1P ,  1P >. ]  ~R  <R  [ <. ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  <->  ( 1P  +P.  1P )  <P  ( 1P  +P.  ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )
) ) )
1916, 1, 18sylancl 411 . . 3  |-  ( N  e.  N.  ->  ( [ <. 1P ,  1P >. ]  ~R  <R  [ <. (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  <->  ( 1P  +P.  1P )  <P  ( 1P  +P.  ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )
) ) )
2014, 19mpbird 166 . 2  |-  ( N  e.  N.  ->  [ <. 1P ,  1P >. ]  ~R  <R  [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
21 df-0 7781 . . . 4  |-  0  =  <. 0R ,  0R >.
2221breq1i 3996 . . 3  |-  ( 0 
<RR  <. [ <. ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. 
<-> 
<. 0R ,  0R >.  <RR  <. [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
23 ltresr 7801 . . 3  |-  ( <. 0R ,  0R >.  <RR  <. [ <. (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. 
<->  0R  <R  [ <. ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
24 df-0r 7693 . . . 4  |-  0R  =  [ <. 1P ,  1P >. ]  ~R
2524breq1i 3996 . . 3  |-  ( 0R 
<R  [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  <->  [ <. 1P ,  1P >. ]  ~R  <R  [
<. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
2622, 23, 253bitri 205 . 2  |-  ( 0 
<RR  <. [ <. ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. 
<->  [ <. 1P ,  1P >. ]  ~R  <R  [ <. (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
2720, 26sylibr 133 1  |-  ( N  e.  N.  ->  0  <RR 
<. [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   {cab 2156   <.cop 3586   class class class wbr 3989  (class class class)co 5853   1oc1o 6388   [cec 6511   N.cnpi 7234    ~Q ceq 7241    <Q cltq 7247   P.cnp 7253   1Pc1p 7254    +P. cpp 7255    <P cltp 7257    ~R cer 7258   0Rc0r 7260    <R cltr 7265   0cc0 7774    <RR cltrr 7778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-2o 6396  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315  df-enq0 7386  df-nq0 7387  df-0nq0 7388  df-plq0 7389  df-mq0 7390  df-inp 7428  df-i1p 7429  df-iplp 7430  df-iltp 7432  df-enr 7688  df-nr 7689  df-ltr 7692  df-0r 7693  df-0 7781  df-r 7784  df-lt 7787
This theorem is referenced by:  recriota  7852
  Copyright terms: Public domain W3C validator