| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > pitoregt0 | Unicode version | ||
| Description: Embedding from  | 
| Ref | Expression | 
|---|---|
| pitoregt0 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 1pr 7621 | 
. . . . . 6
 | |
| 2 | addclpr 7604 | 
. . . . . 6
 | |
| 3 | 1, 1, 2 | mp2an 426 | 
. . . . 5
 | 
| 4 | nnprlu 7620 | 
. . . . 5
 | |
| 5 | ltaddpr 7664 | 
. . . . 5
 | |
| 6 | 3, 4, 5 | sylancr 414 | 
. . . 4
 | 
| 7 | 1 | a1i 9 | 
. . . . . 6
 | 
| 8 | addassprg 7646 | 
. . . . . 6
 | |
| 9 | 7, 7, 4, 8 | syl3anc 1249 | 
. . . . 5
 | 
| 10 | addcomprg 7645 | 
. . . . . . 7
 | |
| 11 | 1, 4, 10 | sylancr 414 | 
. . . . . 6
 | 
| 12 | 11 | oveq2d 5938 | 
. . . . 5
 | 
| 13 | 9, 12 | eqtrd 2229 | 
. . . 4
 | 
| 14 | 6, 13 | breqtrd 4059 | 
. . 3
 | 
| 15 | addclpr 7604 | 
. . . . 5
 | |
| 16 | 4, 1, 15 | sylancl 413 | 
. . . 4
 | 
| 17 | ltsrprg 7814 | 
. . . . 5
 | |
| 18 | 1, 1, 17 | mpanl12 436 | 
. . . 4
 | 
| 19 | 16, 1, 18 | sylancl 413 | 
. . 3
 | 
| 20 | 14, 19 | mpbird 167 | 
. 2
 | 
| 21 | df-0 7886 | 
. . . 4
 | |
| 22 | 21 | breq1i 4040 | 
. . 3
 | 
| 23 | ltresr 7906 | 
. . 3
 | |
| 24 | df-0r 7798 | 
. . . 4
 | |
| 25 | 24 | breq1i 4040 | 
. . 3
 | 
| 26 | 22, 23, 25 | 3bitri 206 | 
. 2
 | 
| 27 | 20, 26 | sylibr 134 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-eprel 4324 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-1o 6474 df-2o 6475 df-oadd 6478 df-omul 6479 df-er 6592 df-ec 6594 df-qs 6598 df-ni 7371 df-pli 7372 df-mi 7373 df-lti 7374 df-plpq 7411 df-mpq 7412 df-enq 7414 df-nqqs 7415 df-plqqs 7416 df-mqqs 7417 df-1nqqs 7418 df-rq 7419 df-ltnqqs 7420 df-enq0 7491 df-nq0 7492 df-0nq0 7493 df-plq0 7494 df-mq0 7495 df-inp 7533 df-i1p 7534 df-iplp 7535 df-iltp 7537 df-enr 7793 df-nr 7794 df-ltr 7797 df-0r 7798 df-0 7886 df-r 7889 df-lt 7892 | 
| This theorem is referenced by: recriota 7957 | 
| Copyright terms: Public domain | W3C validator |