ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqnprm Unicode version

Theorem sqnprm 12101
Description: A square is never prime. (Contributed by Mario Carneiro, 20-Jun-2015.)
Assertion
Ref Expression
sqnprm  |-  ( A  e.  ZZ  ->  -.  ( A ^ 2 )  e.  Prime )

Proof of Theorem sqnprm
StepHypRef Expression
1 zre 9228 . . . . . 6  |-  ( A  e.  ZZ  ->  A  e.  RR )
21adantr 276 . . . . 5  |-  ( ( A  e.  ZZ  /\  ( A ^ 2 )  e.  Prime )  ->  A  e.  RR )
3 absresq 11053 . . . . 5  |-  ( A  e.  RR  ->  (
( abs `  A
) ^ 2 )  =  ( A ^
2 ) )
42, 3syl 14 . . . 4  |-  ( ( A  e.  ZZ  /\  ( A ^ 2 )  e.  Prime )  ->  (
( abs `  A
) ^ 2 )  =  ( A ^
2 ) )
52recnd 7960 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  ( A ^ 2 )  e.  Prime )  ->  A  e.  CC )
65abscld 11156 . . . . . 6  |-  ( ( A  e.  ZZ  /\  ( A ^ 2 )  e.  Prime )  ->  ( abs `  A )  e.  RR )
76recnd 7960 . . . . 5  |-  ( ( A  e.  ZZ  /\  ( A ^ 2 )  e.  Prime )  ->  ( abs `  A )  e.  CC )
87sqvald 10618 . . . 4  |-  ( ( A  e.  ZZ  /\  ( A ^ 2 )  e.  Prime )  ->  (
( abs `  A
) ^ 2 )  =  ( ( abs `  A )  x.  ( abs `  A ) ) )
94, 8eqtr3d 2210 . . 3  |-  ( ( A  e.  ZZ  /\  ( A ^ 2 )  e.  Prime )  ->  ( A ^ 2 )  =  ( ( abs `  A
)  x.  ( abs `  A ) ) )
10 simpr 110 . . 3  |-  ( ( A  e.  ZZ  /\  ( A ^ 2 )  e.  Prime )  ->  ( A ^ 2 )  e. 
Prime )
119, 10eqeltrrd 2253 . 2  |-  ( ( A  e.  ZZ  /\  ( A ^ 2 )  e.  Prime )  ->  (
( abs `  A
)  x.  ( abs `  A ) )  e. 
Prime )
12 nn0abscl 11060 . . . . . 6  |-  ( A  e.  ZZ  ->  ( abs `  A )  e. 
NN0 )
1312adantr 276 . . . . 5  |-  ( ( A  e.  ZZ  /\  ( A ^ 2 )  e.  Prime )  ->  ( abs `  A )  e. 
NN0 )
1413nn0zd 9344 . . . 4  |-  ( ( A  e.  ZZ  /\  ( A ^ 2 )  e.  Prime )  ->  ( abs `  A )  e.  ZZ )
15 sq1 10581 . . . . . 6  |-  ( 1 ^ 2 )  =  1
16 prmuz2 12096 . . . . . . . . 9  |-  ( ( A ^ 2 )  e.  Prime  ->  ( A ^ 2 )  e.  ( ZZ>= `  2 )
)
1716adantl 277 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( A ^ 2 )  e.  Prime )  ->  ( A ^ 2 )  e.  ( ZZ>= `  2 )
)
18 eluz2b1 9572 . . . . . . . . 9  |-  ( ( A ^ 2 )  e.  ( ZZ>= `  2
)  <->  ( ( A ^ 2 )  e.  ZZ  /\  1  < 
( A ^ 2 ) ) )
1918simprbi 275 . . . . . . . 8  |-  ( ( A ^ 2 )  e.  ( ZZ>= `  2
)  ->  1  <  ( A ^ 2 ) )
2017, 19syl 14 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  ( A ^ 2 )  e.  Prime )  ->  1  <  ( A ^ 2 ) )
2120, 4breqtrrd 4026 . . . . . 6  |-  ( ( A  e.  ZZ  /\  ( A ^ 2 )  e.  Prime )  ->  1  <  ( ( abs `  A
) ^ 2 ) )
2215, 21eqbrtrid 4033 . . . . 5  |-  ( ( A  e.  ZZ  /\  ( A ^ 2 )  e.  Prime )  ->  (
1 ^ 2 )  <  ( ( abs `  A ) ^ 2 ) )
235absge0d 11159 . . . . . 6  |-  ( ( A  e.  ZZ  /\  ( A ^ 2 )  e.  Prime )  ->  0  <_  ( abs `  A
) )
24 1re 7931 . . . . . . 7  |-  1  e.  RR
25 0le1 8412 . . . . . . 7  |-  0  <_  1
26 lt2sq 10561 . . . . . . 7  |-  ( ( ( 1  e.  RR  /\  0  <_  1 )  /\  ( ( abs `  A )  e.  RR  /\  0  <_  ( abs `  A ) ) )  ->  ( 1  < 
( abs `  A
)  <->  ( 1 ^ 2 )  <  (
( abs `  A
) ^ 2 ) ) )
2724, 25, 26mpanl12 436 . . . . . 6  |-  ( ( ( abs `  A
)  e.  RR  /\  0  <_  ( abs `  A
) )  ->  (
1  <  ( abs `  A )  <->  ( 1 ^ 2 )  < 
( ( abs `  A
) ^ 2 ) ) )
286, 23, 27syl2anc 411 . . . . 5  |-  ( ( A  e.  ZZ  /\  ( A ^ 2 )  e.  Prime )  ->  (
1  <  ( abs `  A )  <->  ( 1 ^ 2 )  < 
( ( abs `  A
) ^ 2 ) ) )
2922, 28mpbird 167 . . . 4  |-  ( ( A  e.  ZZ  /\  ( A ^ 2 )  e.  Prime )  ->  1  <  ( abs `  A
) )
30 eluz2b1 9572 . . . 4  |-  ( ( abs `  A )  e.  ( ZZ>= `  2
)  <->  ( ( abs `  A )  e.  ZZ  /\  1  <  ( abs `  A ) ) )
3114, 29, 30sylanbrc 417 . . 3  |-  ( ( A  e.  ZZ  /\  ( A ^ 2 )  e.  Prime )  ->  ( abs `  A )  e.  ( ZZ>= `  2 )
)
32 nprm 12088 . . 3  |-  ( ( ( abs `  A
)  e.  ( ZZ>= ` 
2 )  /\  ( abs `  A )  e.  ( ZZ>= `  2 )
)  ->  -.  (
( abs `  A
)  x.  ( abs `  A ) )  e. 
Prime )
3331, 31, 32syl2anc 411 . 2  |-  ( ( A  e.  ZZ  /\  ( A ^ 2 )  e.  Prime )  ->  -.  ( ( abs `  A
)  x.  ( abs `  A ) )  e. 
Prime )
3411, 33pm2.65da 661 1  |-  ( A  e.  ZZ  ->  -.  ( A ^ 2 )  e.  Prime )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2146   class class class wbr 3998   ` cfv 5208  (class class class)co 5865   RRcr 7785   0cc0 7786   1c1 7787    x. cmul 7791    < clt 7966    <_ cle 7967   2c2 8941   NN0cn0 9147   ZZcz 9224   ZZ>=cuz 9499   ^cexp 10487   abscabs 10972   Primecprime 12072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904  ax-arch 7905  ax-caucvg 7906
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-frec 6382  df-1o 6407  df-2o 6408  df-er 6525  df-en 6731  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8602  df-inn 8891  df-2 8949  df-3 8950  df-4 8951  df-n0 9148  df-z 9225  df-uz 9500  df-q 9591  df-rp 9623  df-seqfrec 10414  df-exp 10488  df-cj 10817  df-re 10818  df-im 10819  df-rsqrt 10973  df-abs 10974  df-dvds 11761  df-prm 12073
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator