ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqnprm Unicode version

Theorem sqnprm 11728
Description: A square is never prime. (Contributed by Mario Carneiro, 20-Jun-2015.)
Assertion
Ref Expression
sqnprm  |-  ( A  e.  ZZ  ->  -.  ( A ^ 2 )  e.  Prime )

Proof of Theorem sqnprm
StepHypRef Expression
1 zre 9016 . . . . . 6  |-  ( A  e.  ZZ  ->  A  e.  RR )
21adantr 274 . . . . 5  |-  ( ( A  e.  ZZ  /\  ( A ^ 2 )  e.  Prime )  ->  A  e.  RR )
3 absresq 10805 . . . . 5  |-  ( A  e.  RR  ->  (
( abs `  A
) ^ 2 )  =  ( A ^
2 ) )
42, 3syl 14 . . . 4  |-  ( ( A  e.  ZZ  /\  ( A ^ 2 )  e.  Prime )  ->  (
( abs `  A
) ^ 2 )  =  ( A ^
2 ) )
52recnd 7762 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  ( A ^ 2 )  e.  Prime )  ->  A  e.  CC )
65abscld 10908 . . . . . 6  |-  ( ( A  e.  ZZ  /\  ( A ^ 2 )  e.  Prime )  ->  ( abs `  A )  e.  RR )
76recnd 7762 . . . . 5  |-  ( ( A  e.  ZZ  /\  ( A ^ 2 )  e.  Prime )  ->  ( abs `  A )  e.  CC )
87sqvald 10376 . . . 4  |-  ( ( A  e.  ZZ  /\  ( A ^ 2 )  e.  Prime )  ->  (
( abs `  A
) ^ 2 )  =  ( ( abs `  A )  x.  ( abs `  A ) ) )
94, 8eqtr3d 2152 . . 3  |-  ( ( A  e.  ZZ  /\  ( A ^ 2 )  e.  Prime )  ->  ( A ^ 2 )  =  ( ( abs `  A
)  x.  ( abs `  A ) ) )
10 simpr 109 . . 3  |-  ( ( A  e.  ZZ  /\  ( A ^ 2 )  e.  Prime )  ->  ( A ^ 2 )  e. 
Prime )
119, 10eqeltrrd 2195 . 2  |-  ( ( A  e.  ZZ  /\  ( A ^ 2 )  e.  Prime )  ->  (
( abs `  A
)  x.  ( abs `  A ) )  e. 
Prime )
12 nn0abscl 10812 . . . . . 6  |-  ( A  e.  ZZ  ->  ( abs `  A )  e. 
NN0 )
1312adantr 274 . . . . 5  |-  ( ( A  e.  ZZ  /\  ( A ^ 2 )  e.  Prime )  ->  ( abs `  A )  e. 
NN0 )
1413nn0zd 9129 . . . 4  |-  ( ( A  e.  ZZ  /\  ( A ^ 2 )  e.  Prime )  ->  ( abs `  A )  e.  ZZ )
15 sq1 10341 . . . . . 6  |-  ( 1 ^ 2 )  =  1
16 prmuz2 11723 . . . . . . . . 9  |-  ( ( A ^ 2 )  e.  Prime  ->  ( A ^ 2 )  e.  ( ZZ>= `  2 )
)
1716adantl 275 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( A ^ 2 )  e.  Prime )  ->  ( A ^ 2 )  e.  ( ZZ>= `  2 )
)
18 eluz2b1 9351 . . . . . . . . 9  |-  ( ( A ^ 2 )  e.  ( ZZ>= `  2
)  <->  ( ( A ^ 2 )  e.  ZZ  /\  1  < 
( A ^ 2 ) ) )
1918simprbi 273 . . . . . . . 8  |-  ( ( A ^ 2 )  e.  ( ZZ>= `  2
)  ->  1  <  ( A ^ 2 ) )
2017, 19syl 14 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  ( A ^ 2 )  e.  Prime )  ->  1  <  ( A ^ 2 ) )
2120, 4breqtrrd 3926 . . . . . 6  |-  ( ( A  e.  ZZ  /\  ( A ^ 2 )  e.  Prime )  ->  1  <  ( ( abs `  A
) ^ 2 ) )
2215, 21eqbrtrid 3933 . . . . 5  |-  ( ( A  e.  ZZ  /\  ( A ^ 2 )  e.  Prime )  ->  (
1 ^ 2 )  <  ( ( abs `  A ) ^ 2 ) )
235absge0d 10911 . . . . . 6  |-  ( ( A  e.  ZZ  /\  ( A ^ 2 )  e.  Prime )  ->  0  <_  ( abs `  A
) )
24 1re 7733 . . . . . . 7  |-  1  e.  RR
25 0le1 8211 . . . . . . 7  |-  0  <_  1
26 lt2sq 10321 . . . . . . 7  |-  ( ( ( 1  e.  RR  /\  0  <_  1 )  /\  ( ( abs `  A )  e.  RR  /\  0  <_  ( abs `  A ) ) )  ->  ( 1  < 
( abs `  A
)  <->  ( 1 ^ 2 )  <  (
( abs `  A
) ^ 2 ) ) )
2724, 25, 26mpanl12 432 . . . . . 6  |-  ( ( ( abs `  A
)  e.  RR  /\  0  <_  ( abs `  A
) )  ->  (
1  <  ( abs `  A )  <->  ( 1 ^ 2 )  < 
( ( abs `  A
) ^ 2 ) ) )
286, 23, 27syl2anc 408 . . . . 5  |-  ( ( A  e.  ZZ  /\  ( A ^ 2 )  e.  Prime )  ->  (
1  <  ( abs `  A )  <->  ( 1 ^ 2 )  < 
( ( abs `  A
) ^ 2 ) ) )
2922, 28mpbird 166 . . . 4  |-  ( ( A  e.  ZZ  /\  ( A ^ 2 )  e.  Prime )  ->  1  <  ( abs `  A
) )
30 eluz2b1 9351 . . . 4  |-  ( ( abs `  A )  e.  ( ZZ>= `  2
)  <->  ( ( abs `  A )  e.  ZZ  /\  1  <  ( abs `  A ) ) )
3114, 29, 30sylanbrc 413 . . 3  |-  ( ( A  e.  ZZ  /\  ( A ^ 2 )  e.  Prime )  ->  ( abs `  A )  e.  ( ZZ>= `  2 )
)
32 nprm 11716 . . 3  |-  ( ( ( abs `  A
)  e.  ( ZZ>= ` 
2 )  /\  ( abs `  A )  e.  ( ZZ>= `  2 )
)  ->  -.  (
( abs `  A
)  x.  ( abs `  A ) )  e. 
Prime )
3331, 31, 32syl2anc 408 . 2  |-  ( ( A  e.  ZZ  /\  ( A ^ 2 )  e.  Prime )  ->  -.  ( ( abs `  A
)  x.  ( abs `  A ) )  e. 
Prime )
3411, 33pm2.65da 635 1  |-  ( A  e.  ZZ  ->  -.  ( A ^ 2 )  e.  Prime )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1316    e. wcel 1465   class class class wbr 3899   ` cfv 5093  (class class class)co 5742   RRcr 7587   0cc0 7588   1c1 7589    x. cmul 7593    < clt 7768    <_ cle 7769   2c2 8735   NN0cn0 8935   ZZcz 9012   ZZ>=cuz 9282   ^cexp 10247   abscabs 10724   Primecprime 11700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-mulrcl 7687  ax-addcom 7688  ax-mulcom 7689  ax-addass 7690  ax-mulass 7691  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-1rid 7695  ax-0id 7696  ax-rnegex 7697  ax-precex 7698  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704  ax-pre-mulgt0 7705  ax-pre-mulext 7706  ax-arch 7707  ax-caucvg 7708
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rmo 2401  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-if 3445  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-po 4188  df-iso 4189  df-iord 4258  df-on 4260  df-ilim 4261  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-frec 6256  df-1o 6281  df-2o 6282  df-er 6397  df-en 6603  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-reap 8304  df-ap 8311  df-div 8400  df-inn 8685  df-2 8743  df-3 8744  df-4 8745  df-n0 8936  df-z 9013  df-uz 9283  df-q 9368  df-rp 9398  df-seqfrec 10174  df-exp 10248  df-cj 10569  df-re 10570  df-im 10571  df-rsqrt 10725  df-abs 10726  df-dvds 11406  df-prm 11701
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator