ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemnexp Unicode version

Theorem cvgratnnlemnexp 11691
Description: Lemma for cvgratnn 11698. (Contributed by Jim Kingdon, 15-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3  |-  ( ph  ->  A  e.  RR )
cvgratnn.4  |-  ( ph  ->  A  <  1 )
cvgratnn.gt0  |-  ( ph  ->  0  <  A )
cvgratnn.6  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
cvgratnn.7  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
cvgratnnlemnexp.n  |-  ( ph  ->  N  e.  NN )
Assertion
Ref Expression
cvgratnnlemnexp  |-  ( ph  ->  ( abs `  ( F `  N )
)  <_  ( ( abs `  ( F ` 
1 ) )  x.  ( A ^ ( N  -  1 ) ) ) )
Distinct variable groups:    A, k    k, F    k, N    ph, k

Proof of Theorem cvgratnnlemnexp
Dummy variables  n  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvgratnnlemnexp.n . . 3  |-  ( ph  ->  N  e.  NN )
2 nnuz 9639 . . 3  |-  NN  =  ( ZZ>= `  1 )
31, 2eleqtrdi 2289 . 2  |-  ( ph  ->  N  e.  ( ZZ>= ` 
1 ) )
4 2fveq3 5564 . . . . 5  |-  ( w  =  1  ->  ( abs `  ( F `  w ) )  =  ( abs `  ( F `  1 )
) )
5 oveq1 5930 . . . . . . 7  |-  ( w  =  1  ->  (
w  -  1 )  =  ( 1  -  1 ) )
65oveq2d 5939 . . . . . 6  |-  ( w  =  1  ->  ( A ^ ( w  - 
1 ) )  =  ( A ^ (
1  -  1 ) ) )
76oveq2d 5939 . . . . 5  |-  ( w  =  1  ->  (
( abs `  ( F `  1 )
)  x.  ( A ^ ( w  - 
1 ) ) )  =  ( ( abs `  ( F `  1
) )  x.  ( A ^ ( 1  -  1 ) ) ) )
84, 7breq12d 4047 . . . 4  |-  ( w  =  1  ->  (
( abs `  ( F `  w )
)  <_  ( ( abs `  ( F ` 
1 ) )  x.  ( A ^ (
w  -  1 ) ) )  <->  ( abs `  ( F `  1
) )  <_  (
( abs `  ( F `  1 )
)  x.  ( A ^ ( 1  -  1 ) ) ) ) )
98imbi2d 230 . . 3  |-  ( w  =  1  ->  (
( ph  ->  ( abs `  ( F `  w
) )  <_  (
( abs `  ( F `  1 )
)  x.  ( A ^ ( w  - 
1 ) ) ) )  <->  ( ph  ->  ( abs `  ( F `
 1 ) )  <_  ( ( abs `  ( F `  1
) )  x.  ( A ^ ( 1  -  1 ) ) ) ) ) )
10 2fveq3 5564 . . . . 5  |-  ( w  =  k  ->  ( abs `  ( F `  w ) )  =  ( abs `  ( F `  k )
) )
11 oveq1 5930 . . . . . . 7  |-  ( w  =  k  ->  (
w  -  1 )  =  ( k  - 
1 ) )
1211oveq2d 5939 . . . . . 6  |-  ( w  =  k  ->  ( A ^ ( w  - 
1 ) )  =  ( A ^ (
k  -  1 ) ) )
1312oveq2d 5939 . . . . 5  |-  ( w  =  k  ->  (
( abs `  ( F `  1 )
)  x.  ( A ^ ( w  - 
1 ) ) )  =  ( ( abs `  ( F `  1
) )  x.  ( A ^ ( k  - 
1 ) ) ) )
1410, 13breq12d 4047 . . . 4  |-  ( w  =  k  ->  (
( abs `  ( F `  w )
)  <_  ( ( abs `  ( F ` 
1 ) )  x.  ( A ^ (
w  -  1 ) ) )  <->  ( abs `  ( F `  k
) )  <_  (
( abs `  ( F `  1 )
)  x.  ( A ^ ( k  - 
1 ) ) ) ) )
1514imbi2d 230 . . 3  |-  ( w  =  k  ->  (
( ph  ->  ( abs `  ( F `  w
) )  <_  (
( abs `  ( F `  1 )
)  x.  ( A ^ ( w  - 
1 ) ) ) )  <->  ( ph  ->  ( abs `  ( F `
 k ) )  <_  ( ( abs `  ( F `  1
) )  x.  ( A ^ ( k  - 
1 ) ) ) ) ) )
16 2fveq3 5564 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  ( abs `  ( F `  w ) )  =  ( abs `  ( F `  ( k  +  1 ) ) ) )
17 oveq1 5930 . . . . . . 7  |-  ( w  =  ( k  +  1 )  ->  (
w  -  1 )  =  ( ( k  +  1 )  - 
1 ) )
1817oveq2d 5939 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  ( A ^ ( w  - 
1 ) )  =  ( A ^ (
( k  +  1 )  -  1 ) ) )
1918oveq2d 5939 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (
( abs `  ( F `  1 )
)  x.  ( A ^ ( w  - 
1 ) ) )  =  ( ( abs `  ( F `  1
) )  x.  ( A ^ ( ( k  +  1 )  - 
1 ) ) ) )
2016, 19breq12d 4047 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
( abs `  ( F `  w )
)  <_  ( ( abs `  ( F ` 
1 ) )  x.  ( A ^ (
w  -  1 ) ) )  <->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  (
( abs `  ( F `  1 )
)  x.  ( A ^ ( ( k  +  1 )  - 
1 ) ) ) ) )
2120imbi2d 230 . . 3  |-  ( w  =  ( k  +  1 )  ->  (
( ph  ->  ( abs `  ( F `  w
) )  <_  (
( abs `  ( F `  1 )
)  x.  ( A ^ ( w  - 
1 ) ) ) )  <->  ( ph  ->  ( abs `  ( F `
 ( k  +  1 ) ) )  <_  ( ( abs `  ( F `  1
) )  x.  ( A ^ ( ( k  +  1 )  - 
1 ) ) ) ) ) )
22 2fveq3 5564 . . . . 5  |-  ( w  =  N  ->  ( abs `  ( F `  w ) )  =  ( abs `  ( F `  N )
) )
23 oveq1 5930 . . . . . . 7  |-  ( w  =  N  ->  (
w  -  1 )  =  ( N  - 
1 ) )
2423oveq2d 5939 . . . . . 6  |-  ( w  =  N  ->  ( A ^ ( w  - 
1 ) )  =  ( A ^ ( N  -  1 ) ) )
2524oveq2d 5939 . . . . 5  |-  ( w  =  N  ->  (
( abs `  ( F `  1 )
)  x.  ( A ^ ( w  - 
1 ) ) )  =  ( ( abs `  ( F `  1
) )  x.  ( A ^ ( N  - 
1 ) ) ) )
2622, 25breq12d 4047 . . . 4  |-  ( w  =  N  ->  (
( abs `  ( F `  w )
)  <_  ( ( abs `  ( F ` 
1 ) )  x.  ( A ^ (
w  -  1 ) ) )  <->  ( abs `  ( F `  N
) )  <_  (
( abs `  ( F `  1 )
)  x.  ( A ^ ( N  - 
1 ) ) ) ) )
2726imbi2d 230 . . 3  |-  ( w  =  N  ->  (
( ph  ->  ( abs `  ( F `  w
) )  <_  (
( abs `  ( F `  1 )
)  x.  ( A ^ ( w  - 
1 ) ) ) )  <->  ( ph  ->  ( abs `  ( F `
 N ) )  <_  ( ( abs `  ( F `  1
) )  x.  ( A ^ ( N  - 
1 ) ) ) ) ) )
28 fveq2 5559 . . . . . . . . 9  |-  ( k  =  1  ->  ( F `  k )  =  ( F ` 
1 ) )
2928eleq1d 2265 . . . . . . . 8  |-  ( k  =  1  ->  (
( F `  k
)  e.  CC  <->  ( F `  1 )  e.  CC ) )
30 cvgratnn.6 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
3130ralrimiva 2570 . . . . . . . 8  |-  ( ph  ->  A. k  e.  NN  ( F `  k )  e.  CC )
32 1nn 9003 . . . . . . . . 9  |-  1  e.  NN
3332a1i 9 . . . . . . . 8  |-  ( ph  ->  1  e.  NN )
3429, 31, 33rspcdva 2873 . . . . . . 7  |-  ( ph  ->  ( F `  1
)  e.  CC )
3534abscld 11348 . . . . . 6  |-  ( ph  ->  ( abs `  ( F `  1 )
)  e.  RR )
3635leidd 8543 . . . . 5  |-  ( ph  ->  ( abs `  ( F `  1 )
)  <_  ( abs `  ( F `  1
) ) )
37 1m1e0 9061 . . . . . . . . . 10  |-  ( 1  -  1 )  =  0
3837a1i 9 . . . . . . . . 9  |-  ( ph  ->  ( 1  -  1 )  =  0 )
3938oveq2d 5939 . . . . . . . 8  |-  ( ph  ->  ( A ^ (
1  -  1 ) )  =  ( A ^ 0 ) )
40 cvgratnn.3 . . . . . . . . . 10  |-  ( ph  ->  A  e.  RR )
4140recnd 8057 . . . . . . . . 9  |-  ( ph  ->  A  e.  CC )
4241exp0d 10761 . . . . . . . 8  |-  ( ph  ->  ( A ^ 0 )  =  1 )
4339, 42eqtrd 2229 . . . . . . 7  |-  ( ph  ->  ( A ^ (
1  -  1 ) )  =  1 )
4443oveq2d 5939 . . . . . 6  |-  ( ph  ->  ( ( abs `  ( F `  1 )
)  x.  ( A ^ ( 1  -  1 ) ) )  =  ( ( abs `  ( F `  1
) )  x.  1 ) )
4535recnd 8057 . . . . . . 7  |-  ( ph  ->  ( abs `  ( F `  1 )
)  e.  CC )
4645mulridd 8045 . . . . . 6  |-  ( ph  ->  ( ( abs `  ( F `  1 )
)  x.  1 )  =  ( abs `  ( F `  1 )
) )
4744, 46eqtrd 2229 . . . . 5  |-  ( ph  ->  ( ( abs `  ( F `  1 )
)  x.  ( A ^ ( 1  -  1 ) ) )  =  ( abs `  ( F `  1 )
) )
4836, 47breqtrrd 4062 . . . 4  |-  ( ph  ->  ( abs `  ( F `  1 )
)  <_  ( ( abs `  ( F ` 
1 ) )  x.  ( A ^ (
1  -  1 ) ) ) )
4948a1i 9 . . 3  |-  ( 1  e.  ZZ  ->  ( ph  ->  ( abs `  ( F `  1 )
)  <_  ( ( abs `  ( F ` 
1 ) )  x.  ( A ^ (
1  -  1 ) ) ) ) )
50 elnnuz 9640 . . . . . 6  |-  ( k  e.  NN  <->  k  e.  ( ZZ>= `  1 )
)
5130abscld 11348 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  k
) )  e.  RR )
5235adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  1
) )  e.  RR )
5340adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  A  e.  RR )
54 nnm1nn0 9292 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
k  -  1 )  e.  NN0 )
5554adantl 277 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( k  -  1 )  e. 
NN0 )
5653, 55reexpcld 10784 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( A ^ ( k  - 
1 ) )  e.  RR )
5752, 56remulcld 8059 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( abs `  ( F `
 1 ) )  x.  ( A ^
( k  -  1 ) ) )  e.  RR )
58 0red 8029 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  0  e.  RR )
59 cvgratnn.gt0 . . . . . . . . . . 11  |-  ( ph  ->  0  <  A )
6059adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  0  < 
A )
6158, 53, 60ltled 8147 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  0  <_  A )
62 lemul2a 8888 . . . . . . . . . 10  |-  ( ( ( ( abs `  ( F `  k )
)  e.  RR  /\  ( ( abs `  ( F `  1 )
)  x.  ( A ^ ( k  - 
1 ) ) )  e.  RR  /\  ( A  e.  RR  /\  0  <_  A ) )  /\  ( abs `  ( F `
 k ) )  <_  ( ( abs `  ( F `  1
) )  x.  ( A ^ ( k  - 
1 ) ) ) )  ->  ( A  x.  ( abs `  ( F `  k )
) )  <_  ( A  x.  ( ( abs `  ( F ` 
1 ) )  x.  ( A ^ (
k  -  1 ) ) ) ) )
6362ex 115 . . . . . . . . 9  |-  ( ( ( abs `  ( F `  k )
)  e.  RR  /\  ( ( abs `  ( F `  1 )
)  x.  ( A ^ ( k  - 
1 ) ) )  e.  RR  /\  ( A  e.  RR  /\  0  <_  A ) )  -> 
( ( abs `  ( F `  k )
)  <_  ( ( abs `  ( F ` 
1 ) )  x.  ( A ^ (
k  -  1 ) ) )  ->  ( A  x.  ( abs `  ( F `  k
) ) )  <_ 
( A  x.  (
( abs `  ( F `  1 )
)  x.  ( A ^ ( k  - 
1 ) ) ) ) ) )
6451, 57, 53, 61, 63syl112anc 1253 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( abs `  ( F `
 k ) )  <_  ( ( abs `  ( F `  1
) )  x.  ( A ^ ( k  - 
1 ) ) )  ->  ( A  x.  ( abs `  ( F `
 k ) ) )  <_  ( A  x.  ( ( abs `  ( F `  1 )
)  x.  ( A ^ ( k  - 
1 ) ) ) ) ) )
6541adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  A  e.  CC )
6645adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  1
) )  e.  CC )
6756recnd 8057 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( A ^ ( k  - 
1 ) )  e.  CC )
6865, 66, 67mul12d 8180 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( A  x.  ( ( abs `  ( F `  1
) )  x.  ( A ^ ( k  - 
1 ) ) ) )  =  ( ( abs `  ( F `
 1 ) )  x.  ( A  x.  ( A ^ ( k  -  1 ) ) ) ) )
6965, 55expp1d 10768 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( A ^ ( ( k  -  1 )  +  1 ) )  =  ( ( A ^
( k  -  1 ) )  x.  A
) )
70 simpr 110 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  NN )
7170nncnd 9006 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  CC )
72 1cnd 8044 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  NN )  ->  1  e.  CC )
7371, 72, 72addsubd 8360 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( k  +  1 )  -  1 )  =  ( ( k  - 
1 )  +  1 ) )
7473oveq2d 5939 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( A ^ ( ( k  +  1 )  - 
1 ) )  =  ( A ^ (
( k  -  1 )  +  1 ) ) )
7565, 67mulcomd 8050 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( A  x.  ( A ^
( k  -  1 ) ) )  =  ( ( A ^
( k  -  1 ) )  x.  A
) )
7669, 74, 753eqtr4rd 2240 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( A  x.  ( A ^
( k  -  1 ) ) )  =  ( A ^ (
( k  +  1 )  -  1 ) ) )
7776oveq2d 5939 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( abs `  ( F `
 1 ) )  x.  ( A  x.  ( A ^ ( k  -  1 ) ) ) )  =  ( ( abs `  ( F `  1 )
)  x.  ( A ^ ( ( k  +  1 )  - 
1 ) ) ) )
7868, 77eqtrd 2229 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( A  x.  ( ( abs `  ( F `  1
) )  x.  ( A ^ ( k  - 
1 ) ) ) )  =  ( ( abs `  ( F `
 1 ) )  x.  ( A ^
( ( k  +  1 )  -  1 ) ) ) )
7978breq2d 4046 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( A  x.  ( abs `  ( F `  k
) ) )  <_ 
( A  x.  (
( abs `  ( F `  1 )
)  x.  ( A ^ ( k  - 
1 ) ) ) )  <->  ( A  x.  ( abs `  ( F `
 k ) ) )  <_  ( ( abs `  ( F ` 
1 ) )  x.  ( A ^ (
( k  +  1 )  -  1 ) ) ) ) )
8064, 79sylibd 149 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( abs `  ( F `
 k ) )  <_  ( ( abs `  ( F `  1
) )  x.  ( A ^ ( k  - 
1 ) ) )  ->  ( A  x.  ( abs `  ( F `
 k ) ) )  <_  ( ( abs `  ( F ` 
1 ) )  x.  ( A ^ (
( k  +  1 )  -  1 ) ) ) ) )
81 cvgratnn.7 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
82 fveq2 5559 . . . . . . . . . . . 12  |-  ( n  =  ( k  +  1 )  ->  ( F `  n )  =  ( F `  ( k  +  1 ) ) )
8382eleq1d 2265 . . . . . . . . . . 11  |-  ( n  =  ( k  +  1 )  ->  (
( F `  n
)  e.  CC  <->  ( F `  ( k  +  1 ) )  e.  CC ) )
84 fveq2 5559 . . . . . . . . . . . . . . 15  |-  ( k  =  n  ->  ( F `  k )  =  ( F `  n ) )
8584eleq1d 2265 . . . . . . . . . . . . . 14  |-  ( k  =  n  ->  (
( F `  k
)  e.  CC  <->  ( F `  n )  e.  CC ) )
8685cbvralv 2729 . . . . . . . . . . . . 13  |-  ( A. k  e.  NN  ( F `  k )  e.  CC  <->  A. n  e.  NN  ( F `  n )  e.  CC )
8731, 86sylib 122 . . . . . . . . . . . 12  |-  ( ph  ->  A. n  e.  NN  ( F `  n )  e.  CC )
8887adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  A. n  e.  NN  ( F `  n )  e.  CC )
89 peano2nn 9004 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
k  +  1 )  e.  NN )
9089adantl 277 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( k  +  1 )  e.  NN )
9183, 88, 90rspcdva 2873 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 ( k  +  1 ) )  e.  CC )
9291abscld 11348 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  e.  RR )
9353, 51remulcld 8059 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( A  x.  ( abs `  ( F `  k )
) )  e.  RR )
94 elnnuz 9640 . . . . . . . . . . . . . 14  |-  ( ( k  +  1 )  e.  NN  <->  ( k  +  1 )  e.  ( ZZ>= `  1 )
)
9589, 94sylib 122 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  (
k  +  1 )  e.  ( ZZ>= `  1
) )
9695adantl 277 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( k  +  1 )  e.  ( ZZ>= `  1 )
)
97 uznn0sub 9635 . . . . . . . . . . . 12  |-  ( ( k  +  1 )  e.  ( ZZ>= `  1
)  ->  ( (
k  +  1 )  -  1 )  e. 
NN0 )
9896, 97syl 14 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( k  +  1 )  -  1 )  e. 
NN0 )
9953, 98reexpcld 10784 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( A ^ ( ( k  +  1 )  - 
1 ) )  e.  RR )
10052, 99remulcld 8059 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( abs `  ( F `
 1 ) )  x.  ( A ^
( ( k  +  1 )  -  1 ) ) )  e.  RR )
101 letr 8111 . . . . . . . . 9  |-  ( ( ( abs `  ( F `  ( k  +  1 ) ) )  e.  RR  /\  ( A  x.  ( abs `  ( F `  k ) ) )  e.  RR  /\  (
( abs `  ( F `  1 )
)  x.  ( A ^ ( ( k  +  1 )  - 
1 ) ) )  e.  RR )  -> 
( ( ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) )  /\  ( A  x.  ( abs `  ( F `  k ) ) )  <_  ( ( abs `  ( F `  1
) )  x.  ( A ^ ( ( k  +  1 )  - 
1 ) ) ) )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  (
( abs `  ( F `  1 )
)  x.  ( A ^ ( ( k  +  1 )  - 
1 ) ) ) ) )
10292, 93, 100, 101syl3anc 1249 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( abs `  ( F `  ( k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k )
) )  /\  ( A  x.  ( abs `  ( F `  k
) ) )  <_ 
( ( abs `  ( F `  1 )
)  x.  ( A ^ ( ( k  +  1 )  - 
1 ) ) ) )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  (
( abs `  ( F `  1 )
)  x.  ( A ^ ( ( k  +  1 )  - 
1 ) ) ) ) )
10381, 102mpand 429 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( A  x.  ( abs `  ( F `  k
) ) )  <_ 
( ( abs `  ( F `  1 )
)  x.  ( A ^ ( ( k  +  1 )  - 
1 ) ) )  ->  ( abs `  ( F `  ( k  +  1 ) ) )  <_  ( ( abs `  ( F ` 
1 ) )  x.  ( A ^ (
( k  +  1 )  -  1 ) ) ) ) )
10480, 103syld 45 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( abs `  ( F `
 k ) )  <_  ( ( abs `  ( F `  1
) )  x.  ( A ^ ( k  - 
1 ) ) )  ->  ( abs `  ( F `  ( k  +  1 ) ) )  <_  ( ( abs `  ( F ` 
1 ) )  x.  ( A ^ (
( k  +  1 )  -  1 ) ) ) ) )
10550, 104sylan2br 288 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  1 )
)  ->  ( ( abs `  ( F `  k ) )  <_ 
( ( abs `  ( F `  1 )
)  x.  ( A ^ ( k  - 
1 ) ) )  ->  ( abs `  ( F `  ( k  +  1 ) ) )  <_  ( ( abs `  ( F ` 
1 ) )  x.  ( A ^ (
( k  +  1 )  -  1 ) ) ) ) )
106105expcom 116 . . . 4  |-  ( k  e.  ( ZZ>= `  1
)  ->  ( ph  ->  ( ( abs `  ( F `  k )
)  <_  ( ( abs `  ( F ` 
1 ) )  x.  ( A ^ (
k  -  1 ) ) )  ->  ( abs `  ( F `  ( k  +  1 ) ) )  <_ 
( ( abs `  ( F `  1 )
)  x.  ( A ^ ( ( k  +  1 )  - 
1 ) ) ) ) ) )
107106a2d 26 . . 3  |-  ( k  e.  ( ZZ>= `  1
)  ->  ( ( ph  ->  ( abs `  ( F `  k )
)  <_  ( ( abs `  ( F ` 
1 ) )  x.  ( A ^ (
k  -  1 ) ) ) )  -> 
( ph  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  (
( abs `  ( F `  1 )
)  x.  ( A ^ ( ( k  +  1 )  - 
1 ) ) ) ) ) )
1089, 15, 21, 27, 49, 107uzind4 9664 . 2  |-  ( N  e.  ( ZZ>= `  1
)  ->  ( ph  ->  ( abs `  ( F `  N )
)  <_  ( ( abs `  ( F ` 
1 ) )  x.  ( A ^ ( N  -  1 ) ) ) ) )
1093, 108mpcom 36 1  |-  ( ph  ->  ( abs `  ( F `  N )
)  <_  ( ( abs `  ( F ` 
1 ) )  x.  ( A ^ ( N  -  1 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475   class class class wbr 4034   ` cfv 5259  (class class class)co 5923   CCcc 7879   RRcr 7880   0cc0 7881   1c1 7882    + caddc 7884    x. cmul 7886    < clt 8063    <_ cle 8064    - cmin 8199   NNcn 8992   NN0cn0 9251   ZZcz 9328   ZZ>=cuz 9603   ^cexp 10632   abscabs 11164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-mulrcl 7980  ax-addcom 7981  ax-mulcom 7982  ax-addass 7983  ax-mulass 7984  ax-distr 7985  ax-i2m1 7986  ax-0lt1 7987  ax-1rid 7988  ax-0id 7989  ax-rnegex 7990  ax-precex 7991  ax-cnre 7992  ax-pre-ltirr 7993  ax-pre-ltwlin 7994  ax-pre-lttrn 7995  ax-pre-apti 7996  ax-pre-ltadd 7997  ax-pre-mulgt0 7998  ax-pre-mulext 7999  ax-arch 8000  ax-caucvg 8001
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6199  df-2nd 6200  df-recs 6364  df-frec 6450  df-pnf 8065  df-mnf 8066  df-xr 8067  df-ltxr 8068  df-le 8069  df-sub 8201  df-neg 8202  df-reap 8604  df-ap 8611  df-div 8702  df-inn 8993  df-2 9051  df-3 9052  df-4 9053  df-n0 9252  df-z 9329  df-uz 9604  df-rp 9731  df-seqfrec 10542  df-exp 10633  df-cj 11009  df-re 11010  df-im 11011  df-rsqrt 11165  df-abs 11166
This theorem is referenced by:  cvgratnnlemfm  11696
  Copyright terms: Public domain W3C validator