ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemnexp Unicode version

Theorem cvgratnnlemnexp 11868
Description: Lemma for cvgratnn 11875. (Contributed by Jim Kingdon, 15-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3  |-  ( ph  ->  A  e.  RR )
cvgratnn.4  |-  ( ph  ->  A  <  1 )
cvgratnn.gt0  |-  ( ph  ->  0  <  A )
cvgratnn.6  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
cvgratnn.7  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
cvgratnnlemnexp.n  |-  ( ph  ->  N  e.  NN )
Assertion
Ref Expression
cvgratnnlemnexp  |-  ( ph  ->  ( abs `  ( F `  N )
)  <_  ( ( abs `  ( F ` 
1 ) )  x.  ( A ^ ( N  -  1 ) ) ) )
Distinct variable groups:    A, k    k, F    k, N    ph, k

Proof of Theorem cvgratnnlemnexp
Dummy variables  n  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvgratnnlemnexp.n . . 3  |-  ( ph  ->  N  e.  NN )
2 nnuz 9686 . . 3  |-  NN  =  ( ZZ>= `  1 )
31, 2eleqtrdi 2298 . 2  |-  ( ph  ->  N  e.  ( ZZ>= ` 
1 ) )
4 2fveq3 5583 . . . . 5  |-  ( w  =  1  ->  ( abs `  ( F `  w ) )  =  ( abs `  ( F `  1 )
) )
5 oveq1 5953 . . . . . . 7  |-  ( w  =  1  ->  (
w  -  1 )  =  ( 1  -  1 ) )
65oveq2d 5962 . . . . . 6  |-  ( w  =  1  ->  ( A ^ ( w  - 
1 ) )  =  ( A ^ (
1  -  1 ) ) )
76oveq2d 5962 . . . . 5  |-  ( w  =  1  ->  (
( abs `  ( F `  1 )
)  x.  ( A ^ ( w  - 
1 ) ) )  =  ( ( abs `  ( F `  1
) )  x.  ( A ^ ( 1  -  1 ) ) ) )
84, 7breq12d 4058 . . . 4  |-  ( w  =  1  ->  (
( abs `  ( F `  w )
)  <_  ( ( abs `  ( F ` 
1 ) )  x.  ( A ^ (
w  -  1 ) ) )  <->  ( abs `  ( F `  1
) )  <_  (
( abs `  ( F `  1 )
)  x.  ( A ^ ( 1  -  1 ) ) ) ) )
98imbi2d 230 . . 3  |-  ( w  =  1  ->  (
( ph  ->  ( abs `  ( F `  w
) )  <_  (
( abs `  ( F `  1 )
)  x.  ( A ^ ( w  - 
1 ) ) ) )  <->  ( ph  ->  ( abs `  ( F `
 1 ) )  <_  ( ( abs `  ( F `  1
) )  x.  ( A ^ ( 1  -  1 ) ) ) ) ) )
10 2fveq3 5583 . . . . 5  |-  ( w  =  k  ->  ( abs `  ( F `  w ) )  =  ( abs `  ( F `  k )
) )
11 oveq1 5953 . . . . . . 7  |-  ( w  =  k  ->  (
w  -  1 )  =  ( k  - 
1 ) )
1211oveq2d 5962 . . . . . 6  |-  ( w  =  k  ->  ( A ^ ( w  - 
1 ) )  =  ( A ^ (
k  -  1 ) ) )
1312oveq2d 5962 . . . . 5  |-  ( w  =  k  ->  (
( abs `  ( F `  1 )
)  x.  ( A ^ ( w  - 
1 ) ) )  =  ( ( abs `  ( F `  1
) )  x.  ( A ^ ( k  - 
1 ) ) ) )
1410, 13breq12d 4058 . . . 4  |-  ( w  =  k  ->  (
( abs `  ( F `  w )
)  <_  ( ( abs `  ( F ` 
1 ) )  x.  ( A ^ (
w  -  1 ) ) )  <->  ( abs `  ( F `  k
) )  <_  (
( abs `  ( F `  1 )
)  x.  ( A ^ ( k  - 
1 ) ) ) ) )
1514imbi2d 230 . . 3  |-  ( w  =  k  ->  (
( ph  ->  ( abs `  ( F `  w
) )  <_  (
( abs `  ( F `  1 )
)  x.  ( A ^ ( w  - 
1 ) ) ) )  <->  ( ph  ->  ( abs `  ( F `
 k ) )  <_  ( ( abs `  ( F `  1
) )  x.  ( A ^ ( k  - 
1 ) ) ) ) ) )
16 2fveq3 5583 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  ( abs `  ( F `  w ) )  =  ( abs `  ( F `  ( k  +  1 ) ) ) )
17 oveq1 5953 . . . . . . 7  |-  ( w  =  ( k  +  1 )  ->  (
w  -  1 )  =  ( ( k  +  1 )  - 
1 ) )
1817oveq2d 5962 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  ( A ^ ( w  - 
1 ) )  =  ( A ^ (
( k  +  1 )  -  1 ) ) )
1918oveq2d 5962 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (
( abs `  ( F `  1 )
)  x.  ( A ^ ( w  - 
1 ) ) )  =  ( ( abs `  ( F `  1
) )  x.  ( A ^ ( ( k  +  1 )  - 
1 ) ) ) )
2016, 19breq12d 4058 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
( abs `  ( F `  w )
)  <_  ( ( abs `  ( F ` 
1 ) )  x.  ( A ^ (
w  -  1 ) ) )  <->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  (
( abs `  ( F `  1 )
)  x.  ( A ^ ( ( k  +  1 )  - 
1 ) ) ) ) )
2120imbi2d 230 . . 3  |-  ( w  =  ( k  +  1 )  ->  (
( ph  ->  ( abs `  ( F `  w
) )  <_  (
( abs `  ( F `  1 )
)  x.  ( A ^ ( w  - 
1 ) ) ) )  <->  ( ph  ->  ( abs `  ( F `
 ( k  +  1 ) ) )  <_  ( ( abs `  ( F `  1
) )  x.  ( A ^ ( ( k  +  1 )  - 
1 ) ) ) ) ) )
22 2fveq3 5583 . . . . 5  |-  ( w  =  N  ->  ( abs `  ( F `  w ) )  =  ( abs `  ( F `  N )
) )
23 oveq1 5953 . . . . . . 7  |-  ( w  =  N  ->  (
w  -  1 )  =  ( N  - 
1 ) )
2423oveq2d 5962 . . . . . 6  |-  ( w  =  N  ->  ( A ^ ( w  - 
1 ) )  =  ( A ^ ( N  -  1 ) ) )
2524oveq2d 5962 . . . . 5  |-  ( w  =  N  ->  (
( abs `  ( F `  1 )
)  x.  ( A ^ ( w  - 
1 ) ) )  =  ( ( abs `  ( F `  1
) )  x.  ( A ^ ( N  - 
1 ) ) ) )
2622, 25breq12d 4058 . . . 4  |-  ( w  =  N  ->  (
( abs `  ( F `  w )
)  <_  ( ( abs `  ( F ` 
1 ) )  x.  ( A ^ (
w  -  1 ) ) )  <->  ( abs `  ( F `  N
) )  <_  (
( abs `  ( F `  1 )
)  x.  ( A ^ ( N  - 
1 ) ) ) ) )
2726imbi2d 230 . . 3  |-  ( w  =  N  ->  (
( ph  ->  ( abs `  ( F `  w
) )  <_  (
( abs `  ( F `  1 )
)  x.  ( A ^ ( w  - 
1 ) ) ) )  <->  ( ph  ->  ( abs `  ( F `
 N ) )  <_  ( ( abs `  ( F `  1
) )  x.  ( A ^ ( N  - 
1 ) ) ) ) ) )
28 fveq2 5578 . . . . . . . . 9  |-  ( k  =  1  ->  ( F `  k )  =  ( F ` 
1 ) )
2928eleq1d 2274 . . . . . . . 8  |-  ( k  =  1  ->  (
( F `  k
)  e.  CC  <->  ( F `  1 )  e.  CC ) )
30 cvgratnn.6 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
3130ralrimiva 2579 . . . . . . . 8  |-  ( ph  ->  A. k  e.  NN  ( F `  k )  e.  CC )
32 1nn 9049 . . . . . . . . 9  |-  1  e.  NN
3332a1i 9 . . . . . . . 8  |-  ( ph  ->  1  e.  NN )
3429, 31, 33rspcdva 2882 . . . . . . 7  |-  ( ph  ->  ( F `  1
)  e.  CC )
3534abscld 11525 . . . . . 6  |-  ( ph  ->  ( abs `  ( F `  1 )
)  e.  RR )
3635leidd 8589 . . . . 5  |-  ( ph  ->  ( abs `  ( F `  1 )
)  <_  ( abs `  ( F `  1
) ) )
37 1m1e0 9107 . . . . . . . . . 10  |-  ( 1  -  1 )  =  0
3837a1i 9 . . . . . . . . 9  |-  ( ph  ->  ( 1  -  1 )  =  0 )
3938oveq2d 5962 . . . . . . . 8  |-  ( ph  ->  ( A ^ (
1  -  1 ) )  =  ( A ^ 0 ) )
40 cvgratnn.3 . . . . . . . . . 10  |-  ( ph  ->  A  e.  RR )
4140recnd 8103 . . . . . . . . 9  |-  ( ph  ->  A  e.  CC )
4241exp0d 10814 . . . . . . . 8  |-  ( ph  ->  ( A ^ 0 )  =  1 )
4339, 42eqtrd 2238 . . . . . . 7  |-  ( ph  ->  ( A ^ (
1  -  1 ) )  =  1 )
4443oveq2d 5962 . . . . . 6  |-  ( ph  ->  ( ( abs `  ( F `  1 )
)  x.  ( A ^ ( 1  -  1 ) ) )  =  ( ( abs `  ( F `  1
) )  x.  1 ) )
4535recnd 8103 . . . . . . 7  |-  ( ph  ->  ( abs `  ( F `  1 )
)  e.  CC )
4645mulridd 8091 . . . . . 6  |-  ( ph  ->  ( ( abs `  ( F `  1 )
)  x.  1 )  =  ( abs `  ( F `  1 )
) )
4744, 46eqtrd 2238 . . . . 5  |-  ( ph  ->  ( ( abs `  ( F `  1 )
)  x.  ( A ^ ( 1  -  1 ) ) )  =  ( abs `  ( F `  1 )
) )
4836, 47breqtrrd 4073 . . . 4  |-  ( ph  ->  ( abs `  ( F `  1 )
)  <_  ( ( abs `  ( F ` 
1 ) )  x.  ( A ^ (
1  -  1 ) ) ) )
4948a1i 9 . . 3  |-  ( 1  e.  ZZ  ->  ( ph  ->  ( abs `  ( F `  1 )
)  <_  ( ( abs `  ( F ` 
1 ) )  x.  ( A ^ (
1  -  1 ) ) ) ) )
50 elnnuz 9687 . . . . . 6  |-  ( k  e.  NN  <->  k  e.  ( ZZ>= `  1 )
)
5130abscld 11525 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  k
) )  e.  RR )
5235adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  1
) )  e.  RR )
5340adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  A  e.  RR )
54 nnm1nn0 9338 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
k  -  1 )  e.  NN0 )
5554adantl 277 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( k  -  1 )  e. 
NN0 )
5653, 55reexpcld 10837 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( A ^ ( k  - 
1 ) )  e.  RR )
5752, 56remulcld 8105 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( abs `  ( F `
 1 ) )  x.  ( A ^
( k  -  1 ) ) )  e.  RR )
58 0red 8075 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  0  e.  RR )
59 cvgratnn.gt0 . . . . . . . . . . 11  |-  ( ph  ->  0  <  A )
6059adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  0  < 
A )
6158, 53, 60ltled 8193 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  0  <_  A )
62 lemul2a 8934 . . . . . . . . . 10  |-  ( ( ( ( abs `  ( F `  k )
)  e.  RR  /\  ( ( abs `  ( F `  1 )
)  x.  ( A ^ ( k  - 
1 ) ) )  e.  RR  /\  ( A  e.  RR  /\  0  <_  A ) )  /\  ( abs `  ( F `
 k ) )  <_  ( ( abs `  ( F `  1
) )  x.  ( A ^ ( k  - 
1 ) ) ) )  ->  ( A  x.  ( abs `  ( F `  k )
) )  <_  ( A  x.  ( ( abs `  ( F ` 
1 ) )  x.  ( A ^ (
k  -  1 ) ) ) ) )
6362ex 115 . . . . . . . . 9  |-  ( ( ( abs `  ( F `  k )
)  e.  RR  /\  ( ( abs `  ( F `  1 )
)  x.  ( A ^ ( k  - 
1 ) ) )  e.  RR  /\  ( A  e.  RR  /\  0  <_  A ) )  -> 
( ( abs `  ( F `  k )
)  <_  ( ( abs `  ( F ` 
1 ) )  x.  ( A ^ (
k  -  1 ) ) )  ->  ( A  x.  ( abs `  ( F `  k
) ) )  <_ 
( A  x.  (
( abs `  ( F `  1 )
)  x.  ( A ^ ( k  - 
1 ) ) ) ) ) )
6451, 57, 53, 61, 63syl112anc 1254 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( abs `  ( F `
 k ) )  <_  ( ( abs `  ( F `  1
) )  x.  ( A ^ ( k  - 
1 ) ) )  ->  ( A  x.  ( abs `  ( F `
 k ) ) )  <_  ( A  x.  ( ( abs `  ( F `  1 )
)  x.  ( A ^ ( k  - 
1 ) ) ) ) ) )
6541adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  A  e.  CC )
6645adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  1
) )  e.  CC )
6756recnd 8103 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( A ^ ( k  - 
1 ) )  e.  CC )
6865, 66, 67mul12d 8226 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( A  x.  ( ( abs `  ( F `  1
) )  x.  ( A ^ ( k  - 
1 ) ) ) )  =  ( ( abs `  ( F `
 1 ) )  x.  ( A  x.  ( A ^ ( k  -  1 ) ) ) ) )
6965, 55expp1d 10821 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( A ^ ( ( k  -  1 )  +  1 ) )  =  ( ( A ^
( k  -  1 ) )  x.  A
) )
70 simpr 110 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  NN )
7170nncnd 9052 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  CC )
72 1cnd 8090 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  NN )  ->  1  e.  CC )
7371, 72, 72addsubd 8406 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( k  +  1 )  -  1 )  =  ( ( k  - 
1 )  +  1 ) )
7473oveq2d 5962 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( A ^ ( ( k  +  1 )  - 
1 ) )  =  ( A ^ (
( k  -  1 )  +  1 ) ) )
7565, 67mulcomd 8096 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( A  x.  ( A ^
( k  -  1 ) ) )  =  ( ( A ^
( k  -  1 ) )  x.  A
) )
7669, 74, 753eqtr4rd 2249 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( A  x.  ( A ^
( k  -  1 ) ) )  =  ( A ^ (
( k  +  1 )  -  1 ) ) )
7776oveq2d 5962 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( abs `  ( F `
 1 ) )  x.  ( A  x.  ( A ^ ( k  -  1 ) ) ) )  =  ( ( abs `  ( F `  1 )
)  x.  ( A ^ ( ( k  +  1 )  - 
1 ) ) ) )
7868, 77eqtrd 2238 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( A  x.  ( ( abs `  ( F `  1
) )  x.  ( A ^ ( k  - 
1 ) ) ) )  =  ( ( abs `  ( F `
 1 ) )  x.  ( A ^
( ( k  +  1 )  -  1 ) ) ) )
7978breq2d 4057 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( A  x.  ( abs `  ( F `  k
) ) )  <_ 
( A  x.  (
( abs `  ( F `  1 )
)  x.  ( A ^ ( k  - 
1 ) ) ) )  <->  ( A  x.  ( abs `  ( F `
 k ) ) )  <_  ( ( abs `  ( F ` 
1 ) )  x.  ( A ^ (
( k  +  1 )  -  1 ) ) ) ) )
8064, 79sylibd 149 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( abs `  ( F `
 k ) )  <_  ( ( abs `  ( F `  1
) )  x.  ( A ^ ( k  - 
1 ) ) )  ->  ( A  x.  ( abs `  ( F `
 k ) ) )  <_  ( ( abs `  ( F ` 
1 ) )  x.  ( A ^ (
( k  +  1 )  -  1 ) ) ) ) )
81 cvgratnn.7 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
82 fveq2 5578 . . . . . . . . . . . 12  |-  ( n  =  ( k  +  1 )  ->  ( F `  n )  =  ( F `  ( k  +  1 ) ) )
8382eleq1d 2274 . . . . . . . . . . 11  |-  ( n  =  ( k  +  1 )  ->  (
( F `  n
)  e.  CC  <->  ( F `  ( k  +  1 ) )  e.  CC ) )
84 fveq2 5578 . . . . . . . . . . . . . . 15  |-  ( k  =  n  ->  ( F `  k )  =  ( F `  n ) )
8584eleq1d 2274 . . . . . . . . . . . . . 14  |-  ( k  =  n  ->  (
( F `  k
)  e.  CC  <->  ( F `  n )  e.  CC ) )
8685cbvralv 2738 . . . . . . . . . . . . 13  |-  ( A. k  e.  NN  ( F `  k )  e.  CC  <->  A. n  e.  NN  ( F `  n )  e.  CC )
8731, 86sylib 122 . . . . . . . . . . . 12  |-  ( ph  ->  A. n  e.  NN  ( F `  n )  e.  CC )
8887adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  A. n  e.  NN  ( F `  n )  e.  CC )
89 peano2nn 9050 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
k  +  1 )  e.  NN )
9089adantl 277 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( k  +  1 )  e.  NN )
9183, 88, 90rspcdva 2882 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 ( k  +  1 ) )  e.  CC )
9291abscld 11525 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  e.  RR )
9353, 51remulcld 8105 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( A  x.  ( abs `  ( F `  k )
) )  e.  RR )
94 elnnuz 9687 . . . . . . . . . . . . . 14  |-  ( ( k  +  1 )  e.  NN  <->  ( k  +  1 )  e.  ( ZZ>= `  1 )
)
9589, 94sylib 122 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  (
k  +  1 )  e.  ( ZZ>= `  1
) )
9695adantl 277 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( k  +  1 )  e.  ( ZZ>= `  1 )
)
97 uznn0sub 9682 . . . . . . . . . . . 12  |-  ( ( k  +  1 )  e.  ( ZZ>= `  1
)  ->  ( (
k  +  1 )  -  1 )  e. 
NN0 )
9896, 97syl 14 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( k  +  1 )  -  1 )  e. 
NN0 )
9953, 98reexpcld 10837 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( A ^ ( ( k  +  1 )  - 
1 ) )  e.  RR )
10052, 99remulcld 8105 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( abs `  ( F `
 1 ) )  x.  ( A ^
( ( k  +  1 )  -  1 ) ) )  e.  RR )
101 letr 8157 . . . . . . . . 9  |-  ( ( ( abs `  ( F `  ( k  +  1 ) ) )  e.  RR  /\  ( A  x.  ( abs `  ( F `  k ) ) )  e.  RR  /\  (
( abs `  ( F `  1 )
)  x.  ( A ^ ( ( k  +  1 )  - 
1 ) ) )  e.  RR )  -> 
( ( ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) )  /\  ( A  x.  ( abs `  ( F `  k ) ) )  <_  ( ( abs `  ( F `  1
) )  x.  ( A ^ ( ( k  +  1 )  - 
1 ) ) ) )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  (
( abs `  ( F `  1 )
)  x.  ( A ^ ( ( k  +  1 )  - 
1 ) ) ) ) )
10292, 93, 100, 101syl3anc 1250 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( abs `  ( F `  ( k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k )
) )  /\  ( A  x.  ( abs `  ( F `  k
) ) )  <_ 
( ( abs `  ( F `  1 )
)  x.  ( A ^ ( ( k  +  1 )  - 
1 ) ) ) )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  (
( abs `  ( F `  1 )
)  x.  ( A ^ ( ( k  +  1 )  - 
1 ) ) ) ) )
10381, 102mpand 429 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( A  x.  ( abs `  ( F `  k
) ) )  <_ 
( ( abs `  ( F `  1 )
)  x.  ( A ^ ( ( k  +  1 )  - 
1 ) ) )  ->  ( abs `  ( F `  ( k  +  1 ) ) )  <_  ( ( abs `  ( F ` 
1 ) )  x.  ( A ^ (
( k  +  1 )  -  1 ) ) ) ) )
10480, 103syld 45 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( abs `  ( F `
 k ) )  <_  ( ( abs `  ( F `  1
) )  x.  ( A ^ ( k  - 
1 ) ) )  ->  ( abs `  ( F `  ( k  +  1 ) ) )  <_  ( ( abs `  ( F ` 
1 ) )  x.  ( A ^ (
( k  +  1 )  -  1 ) ) ) ) )
10550, 104sylan2br 288 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  1 )
)  ->  ( ( abs `  ( F `  k ) )  <_ 
( ( abs `  ( F `  1 )
)  x.  ( A ^ ( k  - 
1 ) ) )  ->  ( abs `  ( F `  ( k  +  1 ) ) )  <_  ( ( abs `  ( F ` 
1 ) )  x.  ( A ^ (
( k  +  1 )  -  1 ) ) ) ) )
106105expcom 116 . . . 4  |-  ( k  e.  ( ZZ>= `  1
)  ->  ( ph  ->  ( ( abs `  ( F `  k )
)  <_  ( ( abs `  ( F ` 
1 ) )  x.  ( A ^ (
k  -  1 ) ) )  ->  ( abs `  ( F `  ( k  +  1 ) ) )  <_ 
( ( abs `  ( F `  1 )
)  x.  ( A ^ ( ( k  +  1 )  - 
1 ) ) ) ) ) )
107106a2d 26 . . 3  |-  ( k  e.  ( ZZ>= `  1
)  ->  ( ( ph  ->  ( abs `  ( F `  k )
)  <_  ( ( abs `  ( F ` 
1 ) )  x.  ( A ^ (
k  -  1 ) ) ) )  -> 
( ph  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  (
( abs `  ( F `  1 )
)  x.  ( A ^ ( ( k  +  1 )  - 
1 ) ) ) ) ) )
1089, 15, 21, 27, 49, 107uzind4 9711 . 2  |-  ( N  e.  ( ZZ>= `  1
)  ->  ( ph  ->  ( abs `  ( F `  N )
)  <_  ( ( abs `  ( F ` 
1 ) )  x.  ( A ^ ( N  -  1 ) ) ) ) )
1093, 108mpcom 36 1  |-  ( ph  ->  ( abs `  ( F `  N )
)  <_  ( ( abs `  ( F ` 
1 ) )  x.  ( A ^ ( N  -  1 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2176   A.wral 2484   class class class wbr 4045   ` cfv 5272  (class class class)co 5946   CCcc 7925   RRcr 7926   0cc0 7927   1c1 7928    + caddc 7930    x. cmul 7932    < clt 8109    <_ cle 8110    - cmin 8245   NNcn 9038   NN0cn0 9297   ZZcz 9374   ZZ>=cuz 9650   ^cexp 10685   abscabs 11341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045  ax-arch 8046  ax-caucvg 8047
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-frec 6479  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-n0 9298  df-z 9375  df-uz 9651  df-rp 9778  df-seqfrec 10595  df-exp 10686  df-cj 11186  df-re 11187  df-im 11188  df-rsqrt 11342  df-abs 11343
This theorem is referenced by:  cvgratnnlemfm  11873
  Copyright terms: Public domain W3C validator