ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tanval3ap Unicode version

Theorem tanval3ap 12025
Description: Express the tangent function directly in terms of  exp. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Jim Kingdon, 22-Dec-2022.)
Assertion
Ref Expression
tanval3ap  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  ( tan `  A )  =  ( ( ( exp `  ( 2  x.  (
_i  x.  A )
) )  -  1 )  /  ( _i  x.  ( ( exp `  ( 2  x.  (
_i  x.  A )
) )  +  1 ) ) ) )

Proof of Theorem tanval3ap
StepHypRef Expression
1 ax-icn 8020 . . . . . 6  |-  _i  e.  CC
2 simpl 109 . . . . . 6  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  A  e.  CC )
3 mulcl 8052 . . . . . 6  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
41, 2, 3sylancr 414 . . . . 5  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  (
_i  x.  A )  e.  CC )
5 efcl 11975 . . . . 5  |-  ( ( _i  x.  A )  e.  CC  ->  ( exp `  ( _i  x.  A ) )  e.  CC )
64, 5syl 14 . . . 4  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  ( exp `  ( _i  x.  A ) )  e.  CC )
7 negicn 8273 . . . . . 6  |-  -u _i  e.  CC
8 mulcl 8052 . . . . . 6  |-  ( (
-u _i  e.  CC  /\  A  e.  CC )  ->  ( -u _i  x.  A )  e.  CC )
97, 2, 8sylancr 414 . . . . 5  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  ( -u _i  x.  A )  e.  CC )
10 efcl 11975 . . . . 5  |-  ( (
-u _i  x.  A
)  e.  CC  ->  ( exp `  ( -u _i  x.  A ) )  e.  CC )
119, 10syl 14 . . . 4  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  ( exp `  ( -u _i  x.  A ) )  e.  CC )
126, 11subcld 8383 . . 3  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  (
( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  e.  CC )
136, 11addcld 8092 . . . 4  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  (
( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  e.  CC )
14 mulcl 8052 . . . 4  |-  ( ( _i  e.  CC  /\  ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  e.  CC )  -> 
( _i  x.  (
( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) ) )  e.  CC )
151, 13, 14sylancr 414 . . 3  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  (
_i  x.  ( ( exp `  ( _i  x.  A ) )  +  ( exp `  ( -u _i  x.  A ) ) ) )  e.  CC )
16 2z 9400 . . . . . . . . . . 11  |-  2  e.  ZZ
17 efexp 11993 . . . . . . . . . . 11  |-  ( ( ( _i  x.  A
)  e.  CC  /\  2  e.  ZZ )  ->  ( exp `  (
2  x.  ( _i  x.  A ) ) )  =  ( ( exp `  ( _i  x.  A ) ) ^ 2 ) )
184, 16, 17sylancl 413 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  ( exp `  ( 2  x.  ( _i  x.  A
) ) )  =  ( ( exp `  (
_i  x.  A )
) ^ 2 ) )
196sqvald 10815 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  (
( exp `  (
_i  x.  A )
) ^ 2 )  =  ( ( exp `  ( _i  x.  A
) )  x.  ( exp `  ( _i  x.  A ) ) ) )
2018, 19eqtrd 2238 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  ( exp `  ( 2  x.  ( _i  x.  A
) ) )  =  ( ( exp `  (
_i  x.  A )
)  x.  ( exp `  ( _i  x.  A
) ) ) )
21 mulneg1 8467 . . . . . . . . . . . . 13  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( -u _i  x.  A )  =  -u ( _i  x.  A
) )
221, 2, 21sylancr 414 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  ( -u _i  x.  A )  =  -u ( _i  x.  A ) )
2322fveq2d 5580 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  ( exp `  ( -u _i  x.  A ) )  =  ( exp `  -u (
_i  x.  A )
) )
2423oveq2d 5960 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  (
( exp `  (
_i  x.  A )
)  x.  ( exp `  ( -u _i  x.  A ) ) )  =  ( ( exp `  ( _i  x.  A
) )  x.  ( exp `  -u ( _i  x.  A ) ) ) )
25 efcan 11987 . . . . . . . . . . 11  |-  ( ( _i  x.  A )  e.  CC  ->  (
( exp `  (
_i  x.  A )
)  x.  ( exp `  -u ( _i  x.  A ) ) )  =  1 )
264, 25syl 14 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  (
( exp `  (
_i  x.  A )
)  x.  ( exp `  -u ( _i  x.  A ) ) )  =  1 )
2724, 26eqtr2d 2239 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  1  =  ( ( exp `  ( _i  x.  A
) )  x.  ( exp `  ( -u _i  x.  A ) ) ) )
2820, 27oveq12d 5962 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  (
( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =  ( ( ( exp `  ( _i  x.  A ) )  x.  ( exp `  (
_i  x.  A )
) )  +  ( ( exp `  (
_i  x.  A )
)  x.  ( exp `  ( -u _i  x.  A ) ) ) ) )
296, 6, 11adddid 8097 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  (
( exp `  (
_i  x.  A )
)  x.  ( ( exp `  ( _i  x.  A ) )  +  ( exp `  ( -u _i  x.  A ) ) ) )  =  ( ( ( exp `  ( _i  x.  A
) )  x.  ( exp `  ( _i  x.  A ) ) )  +  ( ( exp `  ( _i  x.  A
) )  x.  ( exp `  ( -u _i  x.  A ) ) ) ) )
3028, 29eqtr4d 2241 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  (
( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  =  ( ( exp `  ( _i  x.  A
) )  x.  (
( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) ) ) )
3130oveq2d 5960 . . . . . 6  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  (
_i  x.  ( ( exp `  ( 2  x.  ( _i  x.  A
) ) )  +  1 ) )  =  ( _i  x.  (
( exp `  (
_i  x.  A )
)  x.  ( ( exp `  ( _i  x.  A ) )  +  ( exp `  ( -u _i  x.  A ) ) ) ) ) )
321a1i 9 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  _i  e.  CC )
3332, 6, 13mul12d 8224 . . . . . 6  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  (
_i  x.  ( ( exp `  ( _i  x.  A ) )  x.  ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) ) ) )  =  ( ( exp `  (
_i  x.  A )
)  x.  ( _i  x.  ( ( exp `  ( _i  x.  A
) )  +  ( exp `  ( -u _i  x.  A ) ) ) ) ) )
3431, 33eqtrd 2238 . . . . 5  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  (
_i  x.  ( ( exp `  ( 2  x.  ( _i  x.  A
) ) )  +  1 ) )  =  ( ( exp `  (
_i  x.  A )
)  x.  ( _i  x.  ( ( exp `  ( _i  x.  A
) )  +  ( exp `  ( -u _i  x.  A ) ) ) ) ) )
35 2cn 9107 . . . . . . . . 9  |-  2  e.  CC
36 mulcl 8052 . . . . . . . . 9  |-  ( ( 2  e.  CC  /\  ( _i  x.  A
)  e.  CC )  ->  ( 2  x.  ( _i  x.  A
) )  e.  CC )
3735, 4, 36sylancr 414 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  (
2  x.  ( _i  x.  A ) )  e.  CC )
38 efcl 11975 . . . . . . . 8  |-  ( ( 2  x.  ( _i  x.  A ) )  e.  CC  ->  ( exp `  ( 2  x.  ( _i  x.  A
) ) )  e.  CC )
3937, 38syl 14 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  ( exp `  ( 2  x.  ( _i  x.  A
) ) )  e.  CC )
40 ax-1cn 8018 . . . . . . 7  |-  1  e.  CC
41 addcl 8050 . . . . . . 7  |-  ( ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  e.  CC  /\  1  e.  CC )  ->  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  e.  CC )
4239, 40, 41sylancl 413 . . . . . 6  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  (
( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 )  e.  CC )
43 iap0 9260 . . . . . . 7  |-  _i #  0
4443a1i 9 . . . . . 6  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  _i #  0 )
45 simpr 110 . . . . . 6  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  (
( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )
4632, 42, 44, 45mulap0d 8731 . . . . 5  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  (
_i  x.  ( ( exp `  ( 2  x.  ( _i  x.  A
) ) )  +  1 ) ) #  0 )
4734, 46eqbrtrrd 4068 . . . 4  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  (
( exp `  (
_i  x.  A )
)  x.  ( _i  x.  ( ( exp `  ( _i  x.  A
) )  +  ( exp `  ( -u _i  x.  A ) ) ) ) ) #  0 )
486, 15, 47mulap0bbd 8733 . . 3  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  (
_i  x.  ( ( exp `  ( _i  x.  A ) )  +  ( exp `  ( -u _i  x.  A ) ) ) ) #  0 )
49 efap0 11988 . . . 4  |-  ( ( _i  x.  A )  e.  CC  ->  ( exp `  ( _i  x.  A ) ) #  0 )
504, 49syl 14 . . 3  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  ( exp `  ( _i  x.  A ) ) #  0 )
5112, 15, 6, 48, 50divcanap5d 8890 . 2  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  (
( ( exp `  (
_i  x.  A )
)  x.  ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) ) )  / 
( ( exp `  (
_i  x.  A )
)  x.  ( _i  x.  ( ( exp `  ( _i  x.  A
) )  +  ( exp `  ( -u _i  x.  A ) ) ) ) ) )  =  ( ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  (
_i  x.  ( ( exp `  ( _i  x.  A ) )  +  ( exp `  ( -u _i  x.  A ) ) ) ) ) )
5220, 27oveq12d 5962 . . . 4  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  (
( exp `  (
2  x.  ( _i  x.  A ) ) )  -  1 )  =  ( ( ( exp `  ( _i  x.  A ) )  x.  ( exp `  (
_i  x.  A )
) )  -  (
( exp `  (
_i  x.  A )
)  x.  ( exp `  ( -u _i  x.  A ) ) ) ) )
536, 6, 11subdid 8486 . . . 4  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  (
( exp `  (
_i  x.  A )
)  x.  ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) ) )  =  ( ( ( exp `  ( _i  x.  A
) )  x.  ( exp `  ( _i  x.  A ) ) )  -  ( ( exp `  ( _i  x.  A
) )  x.  ( exp `  ( -u _i  x.  A ) ) ) ) )
5452, 53eqtr4d 2241 . . 3  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  (
( exp `  (
2  x.  ( _i  x.  A ) ) )  -  1 )  =  ( ( exp `  ( _i  x.  A
) )  x.  (
( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) ) ) )
5554, 34oveq12d 5962 . 2  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  (
( ( exp `  (
2  x.  ( _i  x.  A ) ) )  -  1 )  /  ( _i  x.  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) ) )  =  ( ( ( exp `  (
_i  x.  A )
)  x.  ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) ) )  / 
( ( exp `  (
_i  x.  A )
)  x.  ( _i  x.  ( ( exp `  ( _i  x.  A
) )  +  ( exp `  ( -u _i  x.  A ) ) ) ) ) ) )
56 cosval 12014 . . . . 5  |-  ( A  e.  CC  ->  ( cos `  A )  =  ( ( ( exp `  ( _i  x.  A
) )  +  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) )
5756adantr 276 . . . 4  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  ( cos `  A )  =  ( ( ( exp `  ( _i  x.  A
) )  +  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) )
58 2cnd 9109 . . . . 5  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  2  e.  CC )
5932, 13, 48mulap0bbd 8733 . . . . 5  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  (
( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) ) #  0 )
60 2ap0 9129 . . . . . 6  |-  2 #  0
6160a1i 9 . . . . 5  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  2 #  0 )
6213, 58, 59, 61divap0d 8879 . . . 4  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  (
( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) )  /  2 ) #  0 )
6357, 62eqbrtrd 4066 . . 3  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  ( cos `  A ) #  0 )
64 tanval2ap 12024 . . 3  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( tan `  A )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( _i  x.  ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) ) ) ) )
6563, 64syldan 282 . 2  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  ( tan `  A )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( _i  x.  ( ( exp `  (
_i  x.  A )
)  +  ( exp `  ( -u _i  x.  A ) ) ) ) ) )
6651, 55, 653eqtr4rd 2249 1  |-  ( ( A  e.  CC  /\  ( ( exp `  (
2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  ( tan `  A )  =  ( ( ( exp `  ( 2  x.  (
_i  x.  A )
) )  -  1 )  /  ( _i  x.  ( ( exp `  ( 2  x.  (
_i  x.  A )
) )  +  1 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   class class class wbr 4044   ` cfv 5271  (class class class)co 5944   CCcc 7923   0cc0 7925   1c1 7926   _ici 7927    + caddc 7928    x. cmul 7930    - cmin 8243   -ucneg 8244   # cap 8654    / cdiv 8745   2c2 9087   ZZcz 9372   ^cexp 10683   expce 11953   cosccos 11956   tanctan 11957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-disj 4022  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-frec 6477  df-1o 6502  df-oadd 6506  df-er 6620  df-en 6828  df-dom 6829  df-fin 6830  df-sup 7086  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-ico 10016  df-fz 10131  df-fzo 10265  df-seqfrec 10593  df-exp 10684  df-fac 10871  df-bc 10893  df-ihash 10921  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-clim 11590  df-sumdc 11665  df-ef 11959  df-sin 11961  df-cos 11962  df-tan 11963
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator