ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemmn Unicode version

Theorem cvgratnnlemmn 11951
Description: Lemma for cvgratnn 11957. (Contributed by Jim Kingdon, 15-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3  |-  ( ph  ->  A  e.  RR )
cvgratnn.4  |-  ( ph  ->  A  <  1 )
cvgratnn.gt0  |-  ( ph  ->  0  <  A )
cvgratnn.6  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
cvgratnn.7  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
cvgratnn.m  |-  ( ph  ->  M  e.  NN )
cvgratnn.n  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
Assertion
Ref Expression
cvgratnnlemmn  |-  ( ph  ->  ( abs `  ( F `  N )
)  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ ( N  -  M )
) ) )
Distinct variable groups:    A, k    k, F    k, N    ph, k    k, M

Proof of Theorem cvgratnnlemmn
Dummy variables  n  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvgratnn.n . 2  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 2fveq3 5604 . . . . 5  |-  ( w  =  M  ->  ( abs `  ( F `  w ) )  =  ( abs `  ( F `  M )
) )
3 oveq1 5974 . . . . . . 7  |-  ( w  =  M  ->  (
w  -  M )  =  ( M  -  M ) )
43oveq2d 5983 . . . . . 6  |-  ( w  =  M  ->  ( A ^ ( w  -  M ) )  =  ( A ^ ( M  -  M )
) )
54oveq2d 5983 . . . . 5  |-  ( w  =  M  ->  (
( abs `  ( F `  M )
)  x.  ( A ^ ( w  -  M ) ) )  =  ( ( abs `  ( F `  M
) )  x.  ( A ^ ( M  -  M ) ) ) )
62, 5breq12d 4072 . . . 4  |-  ( w  =  M  ->  (
( abs `  ( F `  w )
)  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
w  -  M ) ) )  <->  ( abs `  ( F `  M
) )  <_  (
( abs `  ( F `  M )
)  x.  ( A ^ ( M  -  M ) ) ) ) )
76imbi2d 230 . . 3  |-  ( w  =  M  ->  (
( ph  ->  ( abs `  ( F `  w
) )  <_  (
( abs `  ( F `  M )
)  x.  ( A ^ ( w  -  M ) ) ) )  <->  ( ph  ->  ( abs `  ( F `
 M ) )  <_  ( ( abs `  ( F `  M
) )  x.  ( A ^ ( M  -  M ) ) ) ) ) )
8 2fveq3 5604 . . . . 5  |-  ( w  =  k  ->  ( abs `  ( F `  w ) )  =  ( abs `  ( F `  k )
) )
9 oveq1 5974 . . . . . . 7  |-  ( w  =  k  ->  (
w  -  M )  =  ( k  -  M ) )
109oveq2d 5983 . . . . . 6  |-  ( w  =  k  ->  ( A ^ ( w  -  M ) )  =  ( A ^ (
k  -  M ) ) )
1110oveq2d 5983 . . . . 5  |-  ( w  =  k  ->  (
( abs `  ( F `  M )
)  x.  ( A ^ ( w  -  M ) ) )  =  ( ( abs `  ( F `  M
) )  x.  ( A ^ ( k  -  M ) ) ) )
128, 11breq12d 4072 . . . 4  |-  ( w  =  k  ->  (
( abs `  ( F `  w )
)  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
w  -  M ) ) )  <->  ( abs `  ( F `  k
) )  <_  (
( abs `  ( F `  M )
)  x.  ( A ^ ( k  -  M ) ) ) ) )
1312imbi2d 230 . . 3  |-  ( w  =  k  ->  (
( ph  ->  ( abs `  ( F `  w
) )  <_  (
( abs `  ( F `  M )
)  x.  ( A ^ ( w  -  M ) ) ) )  <->  ( ph  ->  ( abs `  ( F `
 k ) )  <_  ( ( abs `  ( F `  M
) )  x.  ( A ^ ( k  -  M ) ) ) ) ) )
14 2fveq3 5604 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  ( abs `  ( F `  w ) )  =  ( abs `  ( F `  ( k  +  1 ) ) ) )
15 oveq1 5974 . . . . . . 7  |-  ( w  =  ( k  +  1 )  ->  (
w  -  M )  =  ( ( k  +  1 )  -  M ) )
1615oveq2d 5983 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  ( A ^ ( w  -  M ) )  =  ( A ^ (
( k  +  1 )  -  M ) ) )
1716oveq2d 5983 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (
( abs `  ( F `  M )
)  x.  ( A ^ ( w  -  M ) ) )  =  ( ( abs `  ( F `  M
) )  x.  ( A ^ ( ( k  +  1 )  -  M ) ) ) )
1814, 17breq12d 4072 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
( abs `  ( F `  w )
)  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
w  -  M ) ) )  <->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  (
( abs `  ( F `  M )
)  x.  ( A ^ ( ( k  +  1 )  -  M ) ) ) ) )
1918imbi2d 230 . . 3  |-  ( w  =  ( k  +  1 )  ->  (
( ph  ->  ( abs `  ( F `  w
) )  <_  (
( abs `  ( F `  M )
)  x.  ( A ^ ( w  -  M ) ) ) )  <->  ( ph  ->  ( abs `  ( F `
 ( k  +  1 ) ) )  <_  ( ( abs `  ( F `  M
) )  x.  ( A ^ ( ( k  +  1 )  -  M ) ) ) ) ) )
20 2fveq3 5604 . . . . 5  |-  ( w  =  N  ->  ( abs `  ( F `  w ) )  =  ( abs `  ( F `  N )
) )
21 oveq1 5974 . . . . . . 7  |-  ( w  =  N  ->  (
w  -  M )  =  ( N  -  M ) )
2221oveq2d 5983 . . . . . 6  |-  ( w  =  N  ->  ( A ^ ( w  -  M ) )  =  ( A ^ ( N  -  M )
) )
2322oveq2d 5983 . . . . 5  |-  ( w  =  N  ->  (
( abs `  ( F `  M )
)  x.  ( A ^ ( w  -  M ) ) )  =  ( ( abs `  ( F `  M
) )  x.  ( A ^ ( N  -  M ) ) ) )
2420, 23breq12d 4072 . . . 4  |-  ( w  =  N  ->  (
( abs `  ( F `  w )
)  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
w  -  M ) ) )  <->  ( abs `  ( F `  N
) )  <_  (
( abs `  ( F `  M )
)  x.  ( A ^ ( N  -  M ) ) ) ) )
2524imbi2d 230 . . 3  |-  ( w  =  N  ->  (
( ph  ->  ( abs `  ( F `  w
) )  <_  (
( abs `  ( F `  M )
)  x.  ( A ^ ( w  -  M ) ) ) )  <->  ( ph  ->  ( abs `  ( F `
 N ) )  <_  ( ( abs `  ( F `  M
) )  x.  ( A ^ ( N  -  M ) ) ) ) ) )
26 fveq2 5599 . . . . . . . . 9  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
2726eleq1d 2276 . . . . . . . 8  |-  ( k  =  M  ->  (
( F `  k
)  e.  CC  <->  ( F `  M )  e.  CC ) )
28 cvgratnn.6 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
2928ralrimiva 2581 . . . . . . . 8  |-  ( ph  ->  A. k  e.  NN  ( F `  k )  e.  CC )
30 cvgratnn.m . . . . . . . 8  |-  ( ph  ->  M  e.  NN )
3127, 29, 30rspcdva 2889 . . . . . . 7  |-  ( ph  ->  ( F `  M
)  e.  CC )
3231abscld 11607 . . . . . 6  |-  ( ph  ->  ( abs `  ( F `  M )
)  e.  RR )
3332leidd 8622 . . . . 5  |-  ( ph  ->  ( abs `  ( F `  M )
)  <_  ( abs `  ( F `  M
) ) )
3430nncnd 9085 . . . . . . . . . 10  |-  ( ph  ->  M  e.  CC )
3534subidd 8406 . . . . . . . . 9  |-  ( ph  ->  ( M  -  M
)  =  0 )
3635oveq2d 5983 . . . . . . . 8  |-  ( ph  ->  ( A ^ ( M  -  M )
)  =  ( A ^ 0 ) )
37 cvgratnn.3 . . . . . . . . . 10  |-  ( ph  ->  A  e.  RR )
3837recnd 8136 . . . . . . . . 9  |-  ( ph  ->  A  e.  CC )
3938exp0d 10849 . . . . . . . 8  |-  ( ph  ->  ( A ^ 0 )  =  1 )
4036, 39eqtrd 2240 . . . . . . 7  |-  ( ph  ->  ( A ^ ( M  -  M )
)  =  1 )
4140oveq2d 5983 . . . . . 6  |-  ( ph  ->  ( ( abs `  ( F `  M )
)  x.  ( A ^ ( M  -  M ) ) )  =  ( ( abs `  ( F `  M
) )  x.  1 ) )
4232recnd 8136 . . . . . . 7  |-  ( ph  ->  ( abs `  ( F `  M )
)  e.  CC )
4342mulridd 8124 . . . . . 6  |-  ( ph  ->  ( ( abs `  ( F `  M )
)  x.  1 )  =  ( abs `  ( F `  M )
) )
4441, 43eqtrd 2240 . . . . 5  |-  ( ph  ->  ( ( abs `  ( F `  M )
)  x.  ( A ^ ( M  -  M ) ) )  =  ( abs `  ( F `  M )
) )
4533, 44breqtrrd 4087 . . . 4  |-  ( ph  ->  ( abs `  ( F `  M )
)  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ ( M  -  M )
) ) )
4645a1i 9 . . 3  |-  ( M  e.  ZZ  ->  ( ph  ->  ( abs `  ( F `  M )
)  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ ( M  -  M )
) ) ) )
47 eluznn 9756 . . . . . . . . . . 11  |-  ( ( M  e.  NN  /\  k  e.  ( ZZ>= `  M ) )  -> 
k  e.  NN )
4830, 47sylan 283 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  k  e.  NN )
4948, 28syldan 282 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
5049abscld 11607 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( abs `  ( F `  k
) )  e.  RR )
5132adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( abs `  ( F `  M
) )  e.  RR )
5237adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  A  e.  RR )
53 uznn0sub 9715 . . . . . . . . . . 11  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( k  -  M )  e.  NN0 )
5453adantl 277 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( k  -  M )  e.  NN0 )
5552, 54reexpcld 10872 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( A ^ ( k  -  M ) )  e.  RR )
5651, 55remulcld 8138 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
k  -  M ) ) )  e.  RR )
57 0red 8108 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  0  e.  RR )
58 cvgratnn.gt0 . . . . . . . . . 10  |-  ( ph  ->  0  <  A )
5958adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  0  <  A )
6057, 52, 59ltled 8226 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  0  <_  A )
61 lemul2a 8967 . . . . . . . . 9  |-  ( ( ( ( abs `  ( F `  k )
)  e.  RR  /\  ( ( abs `  ( F `  M )
)  x.  ( A ^ ( k  -  M ) ) )  e.  RR  /\  ( A  e.  RR  /\  0  <_  A ) )  /\  ( abs `  ( F `
 k ) )  <_  ( ( abs `  ( F `  M
) )  x.  ( A ^ ( k  -  M ) ) ) )  ->  ( A  x.  ( abs `  ( F `  k )
) )  <_  ( A  x.  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
k  -  M ) ) ) ) )
6261ex 115 . . . . . . . 8  |-  ( ( ( abs `  ( F `  k )
)  e.  RR  /\  ( ( abs `  ( F `  M )
)  x.  ( A ^ ( k  -  M ) ) )  e.  RR  /\  ( A  e.  RR  /\  0  <_  A ) )  -> 
( ( abs `  ( F `  k )
)  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
k  -  M ) ) )  ->  ( A  x.  ( abs `  ( F `  k
) ) )  <_ 
( A  x.  (
( abs `  ( F `  M )
)  x.  ( A ^ ( k  -  M ) ) ) ) ) )
6350, 56, 52, 60, 62syl112anc 1254 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( abs `  ( F `  k ) )  <_ 
( ( abs `  ( F `  M )
)  x.  ( A ^ ( k  -  M ) ) )  ->  ( A  x.  ( abs `  ( F `
 k ) ) )  <_  ( A  x.  ( ( abs `  ( F `  M )
)  x.  ( A ^ ( k  -  M ) ) ) ) ) )
6438adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  A  e.  CC )
6542adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( abs `  ( F `  M
) )  e.  CC )
6655recnd 8136 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( A ^ ( k  -  M ) )  e.  CC )
6764, 65, 66mul12d 8259 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( A  x.  ( ( abs `  ( F `  M )
)  x.  ( A ^ ( k  -  M ) ) ) )  =  ( ( abs `  ( F `
 M ) )  x.  ( A  x.  ( A ^ ( k  -  M ) ) ) ) )
6864, 54expp1d 10856 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( A ^ ( ( k  -  M )  +  1 ) )  =  ( ( A ^
( k  -  M
) )  x.  A
) )
6948nncnd 9085 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  k  e.  CC )
70 1cnd 8123 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  1  e.  CC )
71 eluzel2 9688 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
7271adantl 277 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  M  e.  ZZ )
7372zcnd 9531 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  M  e.  CC )
7469, 70, 73addsubd 8439 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
k  +  1 )  -  M )  =  ( ( k  -  M )  +  1 ) )
7574oveq2d 5983 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( A ^ ( ( k  +  1 )  -  M ) )  =  ( A ^ (
( k  -  M
)  +  1 ) ) )
7664, 66mulcomd 8129 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( A  x.  ( A ^ (
k  -  M ) ) )  =  ( ( A ^ (
k  -  M ) )  x.  A ) )
7768, 75, 763eqtr4rd 2251 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( A  x.  ( A ^ (
k  -  M ) ) )  =  ( A ^ ( ( k  +  1 )  -  M ) ) )
7877oveq2d 5983 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( abs `  ( F `  M ) )  x.  ( A  x.  ( A ^ ( k  -  M ) ) ) )  =  ( ( abs `  ( F `
 M ) )  x.  ( A ^
( ( k  +  1 )  -  M
) ) ) )
7967, 78eqtrd 2240 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( A  x.  ( ( abs `  ( F `  M )
)  x.  ( A ^ ( k  -  M ) ) ) )  =  ( ( abs `  ( F `
 M ) )  x.  ( A ^
( ( k  +  1 )  -  M
) ) ) )
8079breq2d 4071 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( A  x.  ( abs `  ( F `  k
) ) )  <_ 
( A  x.  (
( abs `  ( F `  M )
)  x.  ( A ^ ( k  -  M ) ) ) )  <->  ( A  x.  ( abs `  ( F `
 k ) ) )  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
( k  +  1 )  -  M ) ) ) ) )
8163, 80sylibd 149 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( abs `  ( F `  k ) )  <_ 
( ( abs `  ( F `  M )
)  x.  ( A ^ ( k  -  M ) ) )  ->  ( A  x.  ( abs `  ( F `
 k ) ) )  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
( k  +  1 )  -  M ) ) ) ) )
82 cvgratnn.7 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
8348, 82syldan 282 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
84 fveq2 5599 . . . . . . . . . . 11  |-  ( n  =  ( k  +  1 )  ->  ( F `  n )  =  ( F `  ( k  +  1 ) ) )
8584eleq1d 2276 . . . . . . . . . 10  |-  ( n  =  ( k  +  1 )  ->  (
( F `  n
)  e.  CC  <->  ( F `  ( k  +  1 ) )  e.  CC ) )
86 fveq2 5599 . . . . . . . . . . . . . 14  |-  ( k  =  n  ->  ( F `  k )  =  ( F `  n ) )
8786eleq1d 2276 . . . . . . . . . . . . 13  |-  ( k  =  n  ->  (
( F `  k
)  e.  CC  <->  ( F `  n )  e.  CC ) )
8887cbvralv 2742 . . . . . . . . . . . 12  |-  ( A. k  e.  NN  ( F `  k )  e.  CC  <->  A. n  e.  NN  ( F `  n )  e.  CC )
8929, 88sylib 122 . . . . . . . . . . 11  |-  ( ph  ->  A. n  e.  NN  ( F `  n )  e.  CC )
9089adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  A. n  e.  NN  ( F `  n )  e.  CC )
9148peano2nnd 9086 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( k  +  1 )  e.  NN )
9285, 90, 91rspcdva 2889 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  ( k  +  1 ) )  e.  CC )
9392abscld 11607 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( abs `  ( F `  (
k  +  1 ) ) )  e.  RR )
9452, 50remulcld 8138 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( A  x.  ( abs `  ( F `  k )
) )  e.  RR )
95 peano2uz 9739 . . . . . . . . . . . 12  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( k  +  1 )  e.  ( ZZ>= `  M )
)
9695adantl 277 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( k  +  1 )  e.  ( ZZ>= `  M )
)
97 uznn0sub 9715 . . . . . . . . . . 11  |-  ( ( k  +  1 )  e.  ( ZZ>= `  M
)  ->  ( (
k  +  1 )  -  M )  e. 
NN0 )
9896, 97syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
k  +  1 )  -  M )  e. 
NN0 )
9952, 98reexpcld 10872 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( A ^ ( ( k  +  1 )  -  M ) )  e.  RR )
10051, 99remulcld 8138 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
( k  +  1 )  -  M ) ) )  e.  RR )
101 letr 8190 . . . . . . . 8  |-  ( ( ( abs `  ( F `  ( k  +  1 ) ) )  e.  RR  /\  ( A  x.  ( abs `  ( F `  k ) ) )  e.  RR  /\  (
( abs `  ( F `  M )
)  x.  ( A ^ ( ( k  +  1 )  -  M ) ) )  e.  RR )  -> 
( ( ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) )  /\  ( A  x.  ( abs `  ( F `  k ) ) )  <_  ( ( abs `  ( F `  M
) )  x.  ( A ^ ( ( k  +  1 )  -  M ) ) ) )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  (
( abs `  ( F `  M )
)  x.  ( A ^ ( ( k  +  1 )  -  M ) ) ) ) )
10293, 94, 100, 101syl3anc 1250 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
( abs `  ( F `  ( k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k )
) )  /\  ( A  x.  ( abs `  ( F `  k
) ) )  <_ 
( ( abs `  ( F `  M )
)  x.  ( A ^ ( ( k  +  1 )  -  M ) ) ) )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  (
( abs `  ( F `  M )
)  x.  ( A ^ ( ( k  +  1 )  -  M ) ) ) ) )
10383, 102mpand 429 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( A  x.  ( abs `  ( F `  k
) ) )  <_ 
( ( abs `  ( F `  M )
)  x.  ( A ^ ( ( k  +  1 )  -  M ) ) )  ->  ( abs `  ( F `  ( k  +  1 ) ) )  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
( k  +  1 )  -  M ) ) ) ) )
10481, 103syld 45 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( abs `  ( F `  k ) )  <_ 
( ( abs `  ( F `  M )
)  x.  ( A ^ ( k  -  M ) ) )  ->  ( abs `  ( F `  ( k  +  1 ) ) )  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
( k  +  1 )  -  M ) ) ) ) )
105104expcom 116 . . . 4  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( ( abs `  ( F `  k )
)  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
k  -  M ) ) )  ->  ( abs `  ( F `  ( k  +  1 ) ) )  <_ 
( ( abs `  ( F `  M )
)  x.  ( A ^ ( ( k  +  1 )  -  M ) ) ) ) ) )
106105a2d 26 . . 3  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ( ph  ->  ( abs `  ( F `  k )
)  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
k  -  M ) ) ) )  -> 
( ph  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  (
( abs `  ( F `  M )
)  x.  ( A ^ ( ( k  +  1 )  -  M ) ) ) ) ) )
1077, 13, 19, 25, 46, 106uzind4 9744 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( abs `  ( F `  N )
)  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ ( N  -  M )
) ) ) )
1081, 107mpcom 36 1  |-  ( ph  ->  ( abs `  ( F `  N )
)  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ ( N  -  M )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2178   A.wral 2486   class class class wbr 4059   ` cfv 5290  (class class class)co 5967   CCcc 7958   RRcr 7959   0cc0 7960   1c1 7961    + caddc 7963    x. cmul 7965    < clt 8142    <_ cle 8143    - cmin 8278   NNcn 9071   NN0cn0 9330   ZZcz 9407   ZZ>=cuz 9683   ^cexp 10720   abscabs 11423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-rp 9811  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425
This theorem is referenced by:  cvgratnnlemabsle  11953
  Copyright terms: Public domain W3C validator