ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemmn Unicode version

Theorem cvgratnnlemmn 11668
Description: Lemma for cvgratnn 11674. (Contributed by Jim Kingdon, 15-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3  |-  ( ph  ->  A  e.  RR )
cvgratnn.4  |-  ( ph  ->  A  <  1 )
cvgratnn.gt0  |-  ( ph  ->  0  <  A )
cvgratnn.6  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
cvgratnn.7  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
cvgratnn.m  |-  ( ph  ->  M  e.  NN )
cvgratnn.n  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
Assertion
Ref Expression
cvgratnnlemmn  |-  ( ph  ->  ( abs `  ( F `  N )
)  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ ( N  -  M )
) ) )
Distinct variable groups:    A, k    k, F    k, N    ph, k    k, M

Proof of Theorem cvgratnnlemmn
Dummy variables  n  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvgratnn.n . 2  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 2fveq3 5559 . . . . 5  |-  ( w  =  M  ->  ( abs `  ( F `  w ) )  =  ( abs `  ( F `  M )
) )
3 oveq1 5925 . . . . . . 7  |-  ( w  =  M  ->  (
w  -  M )  =  ( M  -  M ) )
43oveq2d 5934 . . . . . 6  |-  ( w  =  M  ->  ( A ^ ( w  -  M ) )  =  ( A ^ ( M  -  M )
) )
54oveq2d 5934 . . . . 5  |-  ( w  =  M  ->  (
( abs `  ( F `  M )
)  x.  ( A ^ ( w  -  M ) ) )  =  ( ( abs `  ( F `  M
) )  x.  ( A ^ ( M  -  M ) ) ) )
62, 5breq12d 4042 . . . 4  |-  ( w  =  M  ->  (
( abs `  ( F `  w )
)  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
w  -  M ) ) )  <->  ( abs `  ( F `  M
) )  <_  (
( abs `  ( F `  M )
)  x.  ( A ^ ( M  -  M ) ) ) ) )
76imbi2d 230 . . 3  |-  ( w  =  M  ->  (
( ph  ->  ( abs `  ( F `  w
) )  <_  (
( abs `  ( F `  M )
)  x.  ( A ^ ( w  -  M ) ) ) )  <->  ( ph  ->  ( abs `  ( F `
 M ) )  <_  ( ( abs `  ( F `  M
) )  x.  ( A ^ ( M  -  M ) ) ) ) ) )
8 2fveq3 5559 . . . . 5  |-  ( w  =  k  ->  ( abs `  ( F `  w ) )  =  ( abs `  ( F `  k )
) )
9 oveq1 5925 . . . . . . 7  |-  ( w  =  k  ->  (
w  -  M )  =  ( k  -  M ) )
109oveq2d 5934 . . . . . 6  |-  ( w  =  k  ->  ( A ^ ( w  -  M ) )  =  ( A ^ (
k  -  M ) ) )
1110oveq2d 5934 . . . . 5  |-  ( w  =  k  ->  (
( abs `  ( F `  M )
)  x.  ( A ^ ( w  -  M ) ) )  =  ( ( abs `  ( F `  M
) )  x.  ( A ^ ( k  -  M ) ) ) )
128, 11breq12d 4042 . . . 4  |-  ( w  =  k  ->  (
( abs `  ( F `  w )
)  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
w  -  M ) ) )  <->  ( abs `  ( F `  k
) )  <_  (
( abs `  ( F `  M )
)  x.  ( A ^ ( k  -  M ) ) ) ) )
1312imbi2d 230 . . 3  |-  ( w  =  k  ->  (
( ph  ->  ( abs `  ( F `  w
) )  <_  (
( abs `  ( F `  M )
)  x.  ( A ^ ( w  -  M ) ) ) )  <->  ( ph  ->  ( abs `  ( F `
 k ) )  <_  ( ( abs `  ( F `  M
) )  x.  ( A ^ ( k  -  M ) ) ) ) ) )
14 2fveq3 5559 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  ( abs `  ( F `  w ) )  =  ( abs `  ( F `  ( k  +  1 ) ) ) )
15 oveq1 5925 . . . . . . 7  |-  ( w  =  ( k  +  1 )  ->  (
w  -  M )  =  ( ( k  +  1 )  -  M ) )
1615oveq2d 5934 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  ( A ^ ( w  -  M ) )  =  ( A ^ (
( k  +  1 )  -  M ) ) )
1716oveq2d 5934 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (
( abs `  ( F `  M )
)  x.  ( A ^ ( w  -  M ) ) )  =  ( ( abs `  ( F `  M
) )  x.  ( A ^ ( ( k  +  1 )  -  M ) ) ) )
1814, 17breq12d 4042 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
( abs `  ( F `  w )
)  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
w  -  M ) ) )  <->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  (
( abs `  ( F `  M )
)  x.  ( A ^ ( ( k  +  1 )  -  M ) ) ) ) )
1918imbi2d 230 . . 3  |-  ( w  =  ( k  +  1 )  ->  (
( ph  ->  ( abs `  ( F `  w
) )  <_  (
( abs `  ( F `  M )
)  x.  ( A ^ ( w  -  M ) ) ) )  <->  ( ph  ->  ( abs `  ( F `
 ( k  +  1 ) ) )  <_  ( ( abs `  ( F `  M
) )  x.  ( A ^ ( ( k  +  1 )  -  M ) ) ) ) ) )
20 2fveq3 5559 . . . . 5  |-  ( w  =  N  ->  ( abs `  ( F `  w ) )  =  ( abs `  ( F `  N )
) )
21 oveq1 5925 . . . . . . 7  |-  ( w  =  N  ->  (
w  -  M )  =  ( N  -  M ) )
2221oveq2d 5934 . . . . . 6  |-  ( w  =  N  ->  ( A ^ ( w  -  M ) )  =  ( A ^ ( N  -  M )
) )
2322oveq2d 5934 . . . . 5  |-  ( w  =  N  ->  (
( abs `  ( F `  M )
)  x.  ( A ^ ( w  -  M ) ) )  =  ( ( abs `  ( F `  M
) )  x.  ( A ^ ( N  -  M ) ) ) )
2420, 23breq12d 4042 . . . 4  |-  ( w  =  N  ->  (
( abs `  ( F `  w )
)  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
w  -  M ) ) )  <->  ( abs `  ( F `  N
) )  <_  (
( abs `  ( F `  M )
)  x.  ( A ^ ( N  -  M ) ) ) ) )
2524imbi2d 230 . . 3  |-  ( w  =  N  ->  (
( ph  ->  ( abs `  ( F `  w
) )  <_  (
( abs `  ( F `  M )
)  x.  ( A ^ ( w  -  M ) ) ) )  <->  ( ph  ->  ( abs `  ( F `
 N ) )  <_  ( ( abs `  ( F `  M
) )  x.  ( A ^ ( N  -  M ) ) ) ) ) )
26 fveq2 5554 . . . . . . . . 9  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
2726eleq1d 2262 . . . . . . . 8  |-  ( k  =  M  ->  (
( F `  k
)  e.  CC  <->  ( F `  M )  e.  CC ) )
28 cvgratnn.6 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
2928ralrimiva 2567 . . . . . . . 8  |-  ( ph  ->  A. k  e.  NN  ( F `  k )  e.  CC )
30 cvgratnn.m . . . . . . . 8  |-  ( ph  ->  M  e.  NN )
3127, 29, 30rspcdva 2869 . . . . . . 7  |-  ( ph  ->  ( F `  M
)  e.  CC )
3231abscld 11325 . . . . . 6  |-  ( ph  ->  ( abs `  ( F `  M )
)  e.  RR )
3332leidd 8533 . . . . 5  |-  ( ph  ->  ( abs `  ( F `  M )
)  <_  ( abs `  ( F `  M
) ) )
3430nncnd 8996 . . . . . . . . . 10  |-  ( ph  ->  M  e.  CC )
3534subidd 8318 . . . . . . . . 9  |-  ( ph  ->  ( M  -  M
)  =  0 )
3635oveq2d 5934 . . . . . . . 8  |-  ( ph  ->  ( A ^ ( M  -  M )
)  =  ( A ^ 0 ) )
37 cvgratnn.3 . . . . . . . . . 10  |-  ( ph  ->  A  e.  RR )
3837recnd 8048 . . . . . . . . 9  |-  ( ph  ->  A  e.  CC )
3938exp0d 10738 . . . . . . . 8  |-  ( ph  ->  ( A ^ 0 )  =  1 )
4036, 39eqtrd 2226 . . . . . . 7  |-  ( ph  ->  ( A ^ ( M  -  M )
)  =  1 )
4140oveq2d 5934 . . . . . 6  |-  ( ph  ->  ( ( abs `  ( F `  M )
)  x.  ( A ^ ( M  -  M ) ) )  =  ( ( abs `  ( F `  M
) )  x.  1 ) )
4232recnd 8048 . . . . . . 7  |-  ( ph  ->  ( abs `  ( F `  M )
)  e.  CC )
4342mulridd 8036 . . . . . 6  |-  ( ph  ->  ( ( abs `  ( F `  M )
)  x.  1 )  =  ( abs `  ( F `  M )
) )
4441, 43eqtrd 2226 . . . . 5  |-  ( ph  ->  ( ( abs `  ( F `  M )
)  x.  ( A ^ ( M  -  M ) ) )  =  ( abs `  ( F `  M )
) )
4533, 44breqtrrd 4057 . . . 4  |-  ( ph  ->  ( abs `  ( F `  M )
)  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ ( M  -  M )
) ) )
4645a1i 9 . . 3  |-  ( M  e.  ZZ  ->  ( ph  ->  ( abs `  ( F `  M )
)  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ ( M  -  M )
) ) ) )
47 eluznn 9665 . . . . . . . . . . 11  |-  ( ( M  e.  NN  /\  k  e.  ( ZZ>= `  M ) )  -> 
k  e.  NN )
4830, 47sylan 283 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  k  e.  NN )
4948, 28syldan 282 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
5049abscld 11325 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( abs `  ( F `  k
) )  e.  RR )
5132adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( abs `  ( F `  M
) )  e.  RR )
5237adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  A  e.  RR )
53 uznn0sub 9624 . . . . . . . . . . 11  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( k  -  M )  e.  NN0 )
5453adantl 277 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( k  -  M )  e.  NN0 )
5552, 54reexpcld 10761 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( A ^ ( k  -  M ) )  e.  RR )
5651, 55remulcld 8050 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
k  -  M ) ) )  e.  RR )
57 0red 8020 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  0  e.  RR )
58 cvgratnn.gt0 . . . . . . . . . 10  |-  ( ph  ->  0  <  A )
5958adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  0  <  A )
6057, 52, 59ltled 8138 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  0  <_  A )
61 lemul2a 8878 . . . . . . . . 9  |-  ( ( ( ( abs `  ( F `  k )
)  e.  RR  /\  ( ( abs `  ( F `  M )
)  x.  ( A ^ ( k  -  M ) ) )  e.  RR  /\  ( A  e.  RR  /\  0  <_  A ) )  /\  ( abs `  ( F `
 k ) )  <_  ( ( abs `  ( F `  M
) )  x.  ( A ^ ( k  -  M ) ) ) )  ->  ( A  x.  ( abs `  ( F `  k )
) )  <_  ( A  x.  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
k  -  M ) ) ) ) )
6261ex 115 . . . . . . . 8  |-  ( ( ( abs `  ( F `  k )
)  e.  RR  /\  ( ( abs `  ( F `  M )
)  x.  ( A ^ ( k  -  M ) ) )  e.  RR  /\  ( A  e.  RR  /\  0  <_  A ) )  -> 
( ( abs `  ( F `  k )
)  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
k  -  M ) ) )  ->  ( A  x.  ( abs `  ( F `  k
) ) )  <_ 
( A  x.  (
( abs `  ( F `  M )
)  x.  ( A ^ ( k  -  M ) ) ) ) ) )
6350, 56, 52, 60, 62syl112anc 1253 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( abs `  ( F `  k ) )  <_ 
( ( abs `  ( F `  M )
)  x.  ( A ^ ( k  -  M ) ) )  ->  ( A  x.  ( abs `  ( F `
 k ) ) )  <_  ( A  x.  ( ( abs `  ( F `  M )
)  x.  ( A ^ ( k  -  M ) ) ) ) ) )
6438adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  A  e.  CC )
6542adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( abs `  ( F `  M
) )  e.  CC )
6655recnd 8048 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( A ^ ( k  -  M ) )  e.  CC )
6764, 65, 66mul12d 8171 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( A  x.  ( ( abs `  ( F `  M )
)  x.  ( A ^ ( k  -  M ) ) ) )  =  ( ( abs `  ( F `
 M ) )  x.  ( A  x.  ( A ^ ( k  -  M ) ) ) ) )
6864, 54expp1d 10745 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( A ^ ( ( k  -  M )  +  1 ) )  =  ( ( A ^
( k  -  M
) )  x.  A
) )
6948nncnd 8996 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  k  e.  CC )
70 1cnd 8035 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  1  e.  CC )
71 eluzel2 9597 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
7271adantl 277 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  M  e.  ZZ )
7372zcnd 9440 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  M  e.  CC )
7469, 70, 73addsubd 8351 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
k  +  1 )  -  M )  =  ( ( k  -  M )  +  1 ) )
7574oveq2d 5934 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( A ^ ( ( k  +  1 )  -  M ) )  =  ( A ^ (
( k  -  M
)  +  1 ) ) )
7664, 66mulcomd 8041 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( A  x.  ( A ^ (
k  -  M ) ) )  =  ( ( A ^ (
k  -  M ) )  x.  A ) )
7768, 75, 763eqtr4rd 2237 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( A  x.  ( A ^ (
k  -  M ) ) )  =  ( A ^ ( ( k  +  1 )  -  M ) ) )
7877oveq2d 5934 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( abs `  ( F `  M ) )  x.  ( A  x.  ( A ^ ( k  -  M ) ) ) )  =  ( ( abs `  ( F `
 M ) )  x.  ( A ^
( ( k  +  1 )  -  M
) ) ) )
7967, 78eqtrd 2226 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( A  x.  ( ( abs `  ( F `  M )
)  x.  ( A ^ ( k  -  M ) ) ) )  =  ( ( abs `  ( F `
 M ) )  x.  ( A ^
( ( k  +  1 )  -  M
) ) ) )
8079breq2d 4041 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( A  x.  ( abs `  ( F `  k
) ) )  <_ 
( A  x.  (
( abs `  ( F `  M )
)  x.  ( A ^ ( k  -  M ) ) ) )  <->  ( A  x.  ( abs `  ( F `
 k ) ) )  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
( k  +  1 )  -  M ) ) ) ) )
8163, 80sylibd 149 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( abs `  ( F `  k ) )  <_ 
( ( abs `  ( F `  M )
)  x.  ( A ^ ( k  -  M ) ) )  ->  ( A  x.  ( abs `  ( F `
 k ) ) )  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
( k  +  1 )  -  M ) ) ) ) )
82 cvgratnn.7 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
8348, 82syldan 282 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
84 fveq2 5554 . . . . . . . . . . 11  |-  ( n  =  ( k  +  1 )  ->  ( F `  n )  =  ( F `  ( k  +  1 ) ) )
8584eleq1d 2262 . . . . . . . . . 10  |-  ( n  =  ( k  +  1 )  ->  (
( F `  n
)  e.  CC  <->  ( F `  ( k  +  1 ) )  e.  CC ) )
86 fveq2 5554 . . . . . . . . . . . . . 14  |-  ( k  =  n  ->  ( F `  k )  =  ( F `  n ) )
8786eleq1d 2262 . . . . . . . . . . . . 13  |-  ( k  =  n  ->  (
( F `  k
)  e.  CC  <->  ( F `  n )  e.  CC ) )
8887cbvralv 2726 . . . . . . . . . . . 12  |-  ( A. k  e.  NN  ( F `  k )  e.  CC  <->  A. n  e.  NN  ( F `  n )  e.  CC )
8929, 88sylib 122 . . . . . . . . . . 11  |-  ( ph  ->  A. n  e.  NN  ( F `  n )  e.  CC )
9089adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  A. n  e.  NN  ( F `  n )  e.  CC )
9148peano2nnd 8997 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( k  +  1 )  e.  NN )
9285, 90, 91rspcdva 2869 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  ( k  +  1 ) )  e.  CC )
9392abscld 11325 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( abs `  ( F `  (
k  +  1 ) ) )  e.  RR )
9452, 50remulcld 8050 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( A  x.  ( abs `  ( F `  k )
) )  e.  RR )
95 peano2uz 9648 . . . . . . . . . . . 12  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( k  +  1 )  e.  ( ZZ>= `  M )
)
9695adantl 277 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( k  +  1 )  e.  ( ZZ>= `  M )
)
97 uznn0sub 9624 . . . . . . . . . . 11  |-  ( ( k  +  1 )  e.  ( ZZ>= `  M
)  ->  ( (
k  +  1 )  -  M )  e. 
NN0 )
9896, 97syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
k  +  1 )  -  M )  e. 
NN0 )
9952, 98reexpcld 10761 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( A ^ ( ( k  +  1 )  -  M ) )  e.  RR )
10051, 99remulcld 8050 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
( k  +  1 )  -  M ) ) )  e.  RR )
101 letr 8102 . . . . . . . 8  |-  ( ( ( abs `  ( F `  ( k  +  1 ) ) )  e.  RR  /\  ( A  x.  ( abs `  ( F `  k ) ) )  e.  RR  /\  (
( abs `  ( F `  M )
)  x.  ( A ^ ( ( k  +  1 )  -  M ) ) )  e.  RR )  -> 
( ( ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) )  /\  ( A  x.  ( abs `  ( F `  k ) ) )  <_  ( ( abs `  ( F `  M
) )  x.  ( A ^ ( ( k  +  1 )  -  M ) ) ) )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  (
( abs `  ( F `  M )
)  x.  ( A ^ ( ( k  +  1 )  -  M ) ) ) ) )
10293, 94, 100, 101syl3anc 1249 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
( abs `  ( F `  ( k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k )
) )  /\  ( A  x.  ( abs `  ( F `  k
) ) )  <_ 
( ( abs `  ( F `  M )
)  x.  ( A ^ ( ( k  +  1 )  -  M ) ) ) )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  (
( abs `  ( F `  M )
)  x.  ( A ^ ( ( k  +  1 )  -  M ) ) ) ) )
10383, 102mpand 429 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( A  x.  ( abs `  ( F `  k
) ) )  <_ 
( ( abs `  ( F `  M )
)  x.  ( A ^ ( ( k  +  1 )  -  M ) ) )  ->  ( abs `  ( F `  ( k  +  1 ) ) )  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
( k  +  1 )  -  M ) ) ) ) )
10481, 103syld 45 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( abs `  ( F `  k ) )  <_ 
( ( abs `  ( F `  M )
)  x.  ( A ^ ( k  -  M ) ) )  ->  ( abs `  ( F `  ( k  +  1 ) ) )  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
( k  +  1 )  -  M ) ) ) ) )
105104expcom 116 . . . 4  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( ( abs `  ( F `  k )
)  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
k  -  M ) ) )  ->  ( abs `  ( F `  ( k  +  1 ) ) )  <_ 
( ( abs `  ( F `  M )
)  x.  ( A ^ ( ( k  +  1 )  -  M ) ) ) ) ) )
106105a2d 26 . . 3  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ( ph  ->  ( abs `  ( F `  k )
)  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
k  -  M ) ) ) )  -> 
( ph  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  (
( abs `  ( F `  M )
)  x.  ( A ^ ( ( k  +  1 )  -  M ) ) ) ) ) )
1077, 13, 19, 25, 46, 106uzind4 9653 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( abs `  ( F `  N )
)  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ ( N  -  M )
) ) ) )
1081, 107mpcom 36 1  |-  ( ph  ->  ( abs `  ( F `  N )
)  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ ( N  -  M )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   A.wral 2472   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   CCcc 7870   RRcr 7871   0cc0 7872   1c1 7873    + caddc 7875    x. cmul 7877    < clt 8054    <_ cle 8055    - cmin 8190   NNcn 8982   NN0cn0 9240   ZZcz 9317   ZZ>=cuz 9592   ^cexp 10609   abscabs 11141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-rp 9720  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143
This theorem is referenced by:  cvgratnnlemabsle  11670
  Copyright terms: Public domain W3C validator