ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemmn Unicode version

Theorem cvgratnnlemmn 11245
Description: Lemma for cvgratnn 11251. (Contributed by Jim Kingdon, 15-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3  |-  ( ph  ->  A  e.  RR )
cvgratnn.4  |-  ( ph  ->  A  <  1 )
cvgratnn.gt0  |-  ( ph  ->  0  <  A )
cvgratnn.6  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
cvgratnn.7  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
cvgratnn.m  |-  ( ph  ->  M  e.  NN )
cvgratnn.n  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
Assertion
Ref Expression
cvgratnnlemmn  |-  ( ph  ->  ( abs `  ( F `  N )
)  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ ( N  -  M )
) ) )
Distinct variable groups:    A, k    k, F    k, N    ph, k    k, M

Proof of Theorem cvgratnnlemmn
Dummy variables  n  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvgratnn.n . 2  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 2fveq3 5392 . . . . 5  |-  ( w  =  M  ->  ( abs `  ( F `  w ) )  =  ( abs `  ( F `  M )
) )
3 oveq1 5747 . . . . . . 7  |-  ( w  =  M  ->  (
w  -  M )  =  ( M  -  M ) )
43oveq2d 5756 . . . . . 6  |-  ( w  =  M  ->  ( A ^ ( w  -  M ) )  =  ( A ^ ( M  -  M )
) )
54oveq2d 5756 . . . . 5  |-  ( w  =  M  ->  (
( abs `  ( F `  M )
)  x.  ( A ^ ( w  -  M ) ) )  =  ( ( abs `  ( F `  M
) )  x.  ( A ^ ( M  -  M ) ) ) )
62, 5breq12d 3910 . . . 4  |-  ( w  =  M  ->  (
( abs `  ( F `  w )
)  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
w  -  M ) ) )  <->  ( abs `  ( F `  M
) )  <_  (
( abs `  ( F `  M )
)  x.  ( A ^ ( M  -  M ) ) ) ) )
76imbi2d 229 . . 3  |-  ( w  =  M  ->  (
( ph  ->  ( abs `  ( F `  w
) )  <_  (
( abs `  ( F `  M )
)  x.  ( A ^ ( w  -  M ) ) ) )  <->  ( ph  ->  ( abs `  ( F `
 M ) )  <_  ( ( abs `  ( F `  M
) )  x.  ( A ^ ( M  -  M ) ) ) ) ) )
8 2fveq3 5392 . . . . 5  |-  ( w  =  k  ->  ( abs `  ( F `  w ) )  =  ( abs `  ( F `  k )
) )
9 oveq1 5747 . . . . . . 7  |-  ( w  =  k  ->  (
w  -  M )  =  ( k  -  M ) )
109oveq2d 5756 . . . . . 6  |-  ( w  =  k  ->  ( A ^ ( w  -  M ) )  =  ( A ^ (
k  -  M ) ) )
1110oveq2d 5756 . . . . 5  |-  ( w  =  k  ->  (
( abs `  ( F `  M )
)  x.  ( A ^ ( w  -  M ) ) )  =  ( ( abs `  ( F `  M
) )  x.  ( A ^ ( k  -  M ) ) ) )
128, 11breq12d 3910 . . . 4  |-  ( w  =  k  ->  (
( abs `  ( F `  w )
)  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
w  -  M ) ) )  <->  ( abs `  ( F `  k
) )  <_  (
( abs `  ( F `  M )
)  x.  ( A ^ ( k  -  M ) ) ) ) )
1312imbi2d 229 . . 3  |-  ( w  =  k  ->  (
( ph  ->  ( abs `  ( F `  w
) )  <_  (
( abs `  ( F `  M )
)  x.  ( A ^ ( w  -  M ) ) ) )  <->  ( ph  ->  ( abs `  ( F `
 k ) )  <_  ( ( abs `  ( F `  M
) )  x.  ( A ^ ( k  -  M ) ) ) ) ) )
14 2fveq3 5392 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  ( abs `  ( F `  w ) )  =  ( abs `  ( F `  ( k  +  1 ) ) ) )
15 oveq1 5747 . . . . . . 7  |-  ( w  =  ( k  +  1 )  ->  (
w  -  M )  =  ( ( k  +  1 )  -  M ) )
1615oveq2d 5756 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  ( A ^ ( w  -  M ) )  =  ( A ^ (
( k  +  1 )  -  M ) ) )
1716oveq2d 5756 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (
( abs `  ( F `  M )
)  x.  ( A ^ ( w  -  M ) ) )  =  ( ( abs `  ( F `  M
) )  x.  ( A ^ ( ( k  +  1 )  -  M ) ) ) )
1814, 17breq12d 3910 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
( abs `  ( F `  w )
)  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
w  -  M ) ) )  <->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  (
( abs `  ( F `  M )
)  x.  ( A ^ ( ( k  +  1 )  -  M ) ) ) ) )
1918imbi2d 229 . . 3  |-  ( w  =  ( k  +  1 )  ->  (
( ph  ->  ( abs `  ( F `  w
) )  <_  (
( abs `  ( F `  M )
)  x.  ( A ^ ( w  -  M ) ) ) )  <->  ( ph  ->  ( abs `  ( F `
 ( k  +  1 ) ) )  <_  ( ( abs `  ( F `  M
) )  x.  ( A ^ ( ( k  +  1 )  -  M ) ) ) ) ) )
20 2fveq3 5392 . . . . 5  |-  ( w  =  N  ->  ( abs `  ( F `  w ) )  =  ( abs `  ( F `  N )
) )
21 oveq1 5747 . . . . . . 7  |-  ( w  =  N  ->  (
w  -  M )  =  ( N  -  M ) )
2221oveq2d 5756 . . . . . 6  |-  ( w  =  N  ->  ( A ^ ( w  -  M ) )  =  ( A ^ ( N  -  M )
) )
2322oveq2d 5756 . . . . 5  |-  ( w  =  N  ->  (
( abs `  ( F `  M )
)  x.  ( A ^ ( w  -  M ) ) )  =  ( ( abs `  ( F `  M
) )  x.  ( A ^ ( N  -  M ) ) ) )
2420, 23breq12d 3910 . . . 4  |-  ( w  =  N  ->  (
( abs `  ( F `  w )
)  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
w  -  M ) ) )  <->  ( abs `  ( F `  N
) )  <_  (
( abs `  ( F `  M )
)  x.  ( A ^ ( N  -  M ) ) ) ) )
2524imbi2d 229 . . 3  |-  ( w  =  N  ->  (
( ph  ->  ( abs `  ( F `  w
) )  <_  (
( abs `  ( F `  M )
)  x.  ( A ^ ( w  -  M ) ) ) )  <->  ( ph  ->  ( abs `  ( F `
 N ) )  <_  ( ( abs `  ( F `  M
) )  x.  ( A ^ ( N  -  M ) ) ) ) ) )
26 fveq2 5387 . . . . . . . . 9  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
2726eleq1d 2184 . . . . . . . 8  |-  ( k  =  M  ->  (
( F `  k
)  e.  CC  <->  ( F `  M )  e.  CC ) )
28 cvgratnn.6 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
2928ralrimiva 2480 . . . . . . . 8  |-  ( ph  ->  A. k  e.  NN  ( F `  k )  e.  CC )
30 cvgratnn.m . . . . . . . 8  |-  ( ph  ->  M  e.  NN )
3127, 29, 30rspcdva 2766 . . . . . . 7  |-  ( ph  ->  ( F `  M
)  e.  CC )
3231abscld 10904 . . . . . 6  |-  ( ph  ->  ( abs `  ( F `  M )
)  e.  RR )
3332leidd 8240 . . . . 5  |-  ( ph  ->  ( abs `  ( F `  M )
)  <_  ( abs `  ( F `  M
) ) )
3430nncnd 8694 . . . . . . . . . 10  |-  ( ph  ->  M  e.  CC )
3534subidd 8025 . . . . . . . . 9  |-  ( ph  ->  ( M  -  M
)  =  0 )
3635oveq2d 5756 . . . . . . . 8  |-  ( ph  ->  ( A ^ ( M  -  M )
)  =  ( A ^ 0 ) )
37 cvgratnn.3 . . . . . . . . . 10  |-  ( ph  ->  A  e.  RR )
3837recnd 7758 . . . . . . . . 9  |-  ( ph  ->  A  e.  CC )
3938exp0d 10369 . . . . . . . 8  |-  ( ph  ->  ( A ^ 0 )  =  1 )
4036, 39eqtrd 2148 . . . . . . 7  |-  ( ph  ->  ( A ^ ( M  -  M )
)  =  1 )
4140oveq2d 5756 . . . . . 6  |-  ( ph  ->  ( ( abs `  ( F `  M )
)  x.  ( A ^ ( M  -  M ) ) )  =  ( ( abs `  ( F `  M
) )  x.  1 ) )
4232recnd 7758 . . . . . . 7  |-  ( ph  ->  ( abs `  ( F `  M )
)  e.  CC )
4342mulid1d 7747 . . . . . 6  |-  ( ph  ->  ( ( abs `  ( F `  M )
)  x.  1 )  =  ( abs `  ( F `  M )
) )
4441, 43eqtrd 2148 . . . . 5  |-  ( ph  ->  ( ( abs `  ( F `  M )
)  x.  ( A ^ ( M  -  M ) ) )  =  ( abs `  ( F `  M )
) )
4533, 44breqtrrd 3924 . . . 4  |-  ( ph  ->  ( abs `  ( F `  M )
)  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ ( M  -  M )
) ) )
4645a1i 9 . . 3  |-  ( M  e.  ZZ  ->  ( ph  ->  ( abs `  ( F `  M )
)  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ ( M  -  M )
) ) ) )
47 eluznn 9346 . . . . . . . . . . 11  |-  ( ( M  e.  NN  /\  k  e.  ( ZZ>= `  M ) )  -> 
k  e.  NN )
4830, 47sylan 279 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  k  e.  NN )
4948, 28syldan 278 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
5049abscld 10904 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( abs `  ( F `  k
) )  e.  RR )
5132adantr 272 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( abs `  ( F `  M
) )  e.  RR )
5237adantr 272 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  A  e.  RR )
53 uznn0sub 9309 . . . . . . . . . . 11  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( k  -  M )  e.  NN0 )
5453adantl 273 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( k  -  M )  e.  NN0 )
5552, 54reexpcld 10392 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( A ^ ( k  -  M ) )  e.  RR )
5651, 55remulcld 7760 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
k  -  M ) ) )  e.  RR )
57 0red 7731 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  0  e.  RR )
58 cvgratnn.gt0 . . . . . . . . . 10  |-  ( ph  ->  0  <  A )
5958adantr 272 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  0  <  A )
6057, 52, 59ltled 7845 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  0  <_  A )
61 lemul2a 8577 . . . . . . . . 9  |-  ( ( ( ( abs `  ( F `  k )
)  e.  RR  /\  ( ( abs `  ( F `  M )
)  x.  ( A ^ ( k  -  M ) ) )  e.  RR  /\  ( A  e.  RR  /\  0  <_  A ) )  /\  ( abs `  ( F `
 k ) )  <_  ( ( abs `  ( F `  M
) )  x.  ( A ^ ( k  -  M ) ) ) )  ->  ( A  x.  ( abs `  ( F `  k )
) )  <_  ( A  x.  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
k  -  M ) ) ) ) )
6261ex 114 . . . . . . . 8  |-  ( ( ( abs `  ( F `  k )
)  e.  RR  /\  ( ( abs `  ( F `  M )
)  x.  ( A ^ ( k  -  M ) ) )  e.  RR  /\  ( A  e.  RR  /\  0  <_  A ) )  -> 
( ( abs `  ( F `  k )
)  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
k  -  M ) ) )  ->  ( A  x.  ( abs `  ( F `  k
) ) )  <_ 
( A  x.  (
( abs `  ( F `  M )
)  x.  ( A ^ ( k  -  M ) ) ) ) ) )
6350, 56, 52, 60, 62syl112anc 1203 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( abs `  ( F `  k ) )  <_ 
( ( abs `  ( F `  M )
)  x.  ( A ^ ( k  -  M ) ) )  ->  ( A  x.  ( abs `  ( F `
 k ) ) )  <_  ( A  x.  ( ( abs `  ( F `  M )
)  x.  ( A ^ ( k  -  M ) ) ) ) ) )
6438adantr 272 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  A  e.  CC )
6542adantr 272 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( abs `  ( F `  M
) )  e.  CC )
6655recnd 7758 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( A ^ ( k  -  M ) )  e.  CC )
6764, 65, 66mul12d 7878 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( A  x.  ( ( abs `  ( F `  M )
)  x.  ( A ^ ( k  -  M ) ) ) )  =  ( ( abs `  ( F `
 M ) )  x.  ( A  x.  ( A ^ ( k  -  M ) ) ) ) )
6864, 54expp1d 10376 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( A ^ ( ( k  -  M )  +  1 ) )  =  ( ( A ^
( k  -  M
) )  x.  A
) )
6948nncnd 8694 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  k  e.  CC )
70 1cnd 7746 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  1  e.  CC )
71 eluzel2 9283 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
7271adantl 273 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  M  e.  ZZ )
7372zcnd 9128 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  M  e.  CC )
7469, 70, 73addsubd 8058 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
k  +  1 )  -  M )  =  ( ( k  -  M )  +  1 ) )
7574oveq2d 5756 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( A ^ ( ( k  +  1 )  -  M ) )  =  ( A ^ (
( k  -  M
)  +  1 ) ) )
7664, 66mulcomd 7751 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( A  x.  ( A ^ (
k  -  M ) ) )  =  ( ( A ^ (
k  -  M ) )  x.  A ) )
7768, 75, 763eqtr4rd 2159 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( A  x.  ( A ^ (
k  -  M ) ) )  =  ( A ^ ( ( k  +  1 )  -  M ) ) )
7877oveq2d 5756 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( abs `  ( F `  M ) )  x.  ( A  x.  ( A ^ ( k  -  M ) ) ) )  =  ( ( abs `  ( F `
 M ) )  x.  ( A ^
( ( k  +  1 )  -  M
) ) ) )
7967, 78eqtrd 2148 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( A  x.  ( ( abs `  ( F `  M )
)  x.  ( A ^ ( k  -  M ) ) ) )  =  ( ( abs `  ( F `
 M ) )  x.  ( A ^
( ( k  +  1 )  -  M
) ) ) )
8079breq2d 3909 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( A  x.  ( abs `  ( F `  k
) ) )  <_ 
( A  x.  (
( abs `  ( F `  M )
)  x.  ( A ^ ( k  -  M ) ) ) )  <->  ( A  x.  ( abs `  ( F `
 k ) ) )  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
( k  +  1 )  -  M ) ) ) ) )
8163, 80sylibd 148 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( abs `  ( F `  k ) )  <_ 
( ( abs `  ( F `  M )
)  x.  ( A ^ ( k  -  M ) ) )  ->  ( A  x.  ( abs `  ( F `
 k ) ) )  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
( k  +  1 )  -  M ) ) ) ) )
82 cvgratnn.7 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
8348, 82syldan 278 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
84 fveq2 5387 . . . . . . . . . . 11  |-  ( n  =  ( k  +  1 )  ->  ( F `  n )  =  ( F `  ( k  +  1 ) ) )
8584eleq1d 2184 . . . . . . . . . 10  |-  ( n  =  ( k  +  1 )  ->  (
( F `  n
)  e.  CC  <->  ( F `  ( k  +  1 ) )  e.  CC ) )
86 fveq2 5387 . . . . . . . . . . . . . 14  |-  ( k  =  n  ->  ( F `  k )  =  ( F `  n ) )
8786eleq1d 2184 . . . . . . . . . . . . 13  |-  ( k  =  n  ->  (
( F `  k
)  e.  CC  <->  ( F `  n )  e.  CC ) )
8887cbvralv 2629 . . . . . . . . . . . 12  |-  ( A. k  e.  NN  ( F `  k )  e.  CC  <->  A. n  e.  NN  ( F `  n )  e.  CC )
8929, 88sylib 121 . . . . . . . . . . 11  |-  ( ph  ->  A. n  e.  NN  ( F `  n )  e.  CC )
9089adantr 272 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  A. n  e.  NN  ( F `  n )  e.  CC )
9148peano2nnd 8695 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( k  +  1 )  e.  NN )
9285, 90, 91rspcdva 2766 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  ( k  +  1 ) )  e.  CC )
9392abscld 10904 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( abs `  ( F `  (
k  +  1 ) ) )  e.  RR )
9452, 50remulcld 7760 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( A  x.  ( abs `  ( F `  k )
) )  e.  RR )
95 peano2uz 9330 . . . . . . . . . . . 12  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( k  +  1 )  e.  ( ZZ>= `  M )
)
9695adantl 273 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( k  +  1 )  e.  ( ZZ>= `  M )
)
97 uznn0sub 9309 . . . . . . . . . . 11  |-  ( ( k  +  1 )  e.  ( ZZ>= `  M
)  ->  ( (
k  +  1 )  -  M )  e. 
NN0 )
9896, 97syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
k  +  1 )  -  M )  e. 
NN0 )
9952, 98reexpcld 10392 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( A ^ ( ( k  +  1 )  -  M ) )  e.  RR )
10051, 99remulcld 7760 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
( k  +  1 )  -  M ) ) )  e.  RR )
101 letr 7811 . . . . . . . 8  |-  ( ( ( abs `  ( F `  ( k  +  1 ) ) )  e.  RR  /\  ( A  x.  ( abs `  ( F `  k ) ) )  e.  RR  /\  (
( abs `  ( F `  M )
)  x.  ( A ^ ( ( k  +  1 )  -  M ) ) )  e.  RR )  -> 
( ( ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) )  /\  ( A  x.  ( abs `  ( F `  k ) ) )  <_  ( ( abs `  ( F `  M
) )  x.  ( A ^ ( ( k  +  1 )  -  M ) ) ) )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  (
( abs `  ( F `  M )
)  x.  ( A ^ ( ( k  +  1 )  -  M ) ) ) ) )
10293, 94, 100, 101syl3anc 1199 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
( abs `  ( F `  ( k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k )
) )  /\  ( A  x.  ( abs `  ( F `  k
) ) )  <_ 
( ( abs `  ( F `  M )
)  x.  ( A ^ ( ( k  +  1 )  -  M ) ) ) )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  (
( abs `  ( F `  M )
)  x.  ( A ^ ( ( k  +  1 )  -  M ) ) ) ) )
10383, 102mpand 423 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( A  x.  ( abs `  ( F `  k
) ) )  <_ 
( ( abs `  ( F `  M )
)  x.  ( A ^ ( ( k  +  1 )  -  M ) ) )  ->  ( abs `  ( F `  ( k  +  1 ) ) )  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
( k  +  1 )  -  M ) ) ) ) )
10481, 103syld 45 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( abs `  ( F `  k ) )  <_ 
( ( abs `  ( F `  M )
)  x.  ( A ^ ( k  -  M ) ) )  ->  ( abs `  ( F `  ( k  +  1 ) ) )  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
( k  +  1 )  -  M ) ) ) ) )
105104expcom 115 . . . 4  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( ( abs `  ( F `  k )
)  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
k  -  M ) ) )  ->  ( abs `  ( F `  ( k  +  1 ) ) )  <_ 
( ( abs `  ( F `  M )
)  x.  ( A ^ ( ( k  +  1 )  -  M ) ) ) ) ) )
106105a2d 26 . . 3  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ( ph  ->  ( abs `  ( F `  k )
)  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
k  -  M ) ) ) )  -> 
( ph  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  (
( abs `  ( F `  M )
)  x.  ( A ^ ( ( k  +  1 )  -  M ) ) ) ) ) )
1077, 13, 19, 25, 46, 106uzind4 9335 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( abs `  ( F `  N )
)  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ ( N  -  M )
) ) ) )
1081, 107mpcom 36 1  |-  ( ph  ->  ( abs `  ( F `  N )
)  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ ( N  -  M )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 945    = wceq 1314    e. wcel 1463   A.wral 2391   class class class wbr 3897   ` cfv 5091  (class class class)co 5740   CCcc 7582   RRcr 7583   0cc0 7584   1c1 7585    + caddc 7587    x. cmul 7589    < clt 7764    <_ cle 7765    - cmin 7897   NNcn 8680   NN0cn0 8931   ZZcz 9008   ZZ>=cuz 9278   ^cexp 10243   abscabs 10720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-mulrcl 7683  ax-addcom 7684  ax-mulcom 7685  ax-addass 7686  ax-mulass 7687  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-1rid 7691  ax-0id 7692  ax-rnegex 7693  ax-precex 7694  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-apti 7699  ax-pre-ltadd 7700  ax-pre-mulgt0 7701  ax-pre-mulext 7702  ax-arch 7703  ax-caucvg 7704
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rmo 2399  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-if 3443  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-id 4183  df-po 4186  df-iso 4187  df-iord 4256  df-on 4258  df-ilim 4259  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-recs 6168  df-frec 6254  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-reap 8300  df-ap 8307  df-div 8396  df-inn 8681  df-2 8739  df-3 8740  df-4 8741  df-n0 8932  df-z 9009  df-uz 9279  df-rp 9394  df-seqfrec 10170  df-exp 10244  df-cj 10565  df-re 10566  df-im 10567  df-rsqrt 10721  df-abs 10722
This theorem is referenced by:  cvgratnnlemabsle  11247
  Copyright terms: Public domain W3C validator