ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemmn Unicode version

Theorem cvgratnnlemmn 11564
Description: Lemma for cvgratnn 11570. (Contributed by Jim Kingdon, 15-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3  |-  ( ph  ->  A  e.  RR )
cvgratnn.4  |-  ( ph  ->  A  <  1 )
cvgratnn.gt0  |-  ( ph  ->  0  <  A )
cvgratnn.6  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
cvgratnn.7  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
cvgratnn.m  |-  ( ph  ->  M  e.  NN )
cvgratnn.n  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
Assertion
Ref Expression
cvgratnnlemmn  |-  ( ph  ->  ( abs `  ( F `  N )
)  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ ( N  -  M )
) ) )
Distinct variable groups:    A, k    k, F    k, N    ph, k    k, M

Proof of Theorem cvgratnnlemmn
Dummy variables  n  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvgratnn.n . 2  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 2fveq3 5539 . . . . 5  |-  ( w  =  M  ->  ( abs `  ( F `  w ) )  =  ( abs `  ( F `  M )
) )
3 oveq1 5902 . . . . . . 7  |-  ( w  =  M  ->  (
w  -  M )  =  ( M  -  M ) )
43oveq2d 5911 . . . . . 6  |-  ( w  =  M  ->  ( A ^ ( w  -  M ) )  =  ( A ^ ( M  -  M )
) )
54oveq2d 5911 . . . . 5  |-  ( w  =  M  ->  (
( abs `  ( F `  M )
)  x.  ( A ^ ( w  -  M ) ) )  =  ( ( abs `  ( F `  M
) )  x.  ( A ^ ( M  -  M ) ) ) )
62, 5breq12d 4031 . . . 4  |-  ( w  =  M  ->  (
( abs `  ( F `  w )
)  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
w  -  M ) ) )  <->  ( abs `  ( F `  M
) )  <_  (
( abs `  ( F `  M )
)  x.  ( A ^ ( M  -  M ) ) ) ) )
76imbi2d 230 . . 3  |-  ( w  =  M  ->  (
( ph  ->  ( abs `  ( F `  w
) )  <_  (
( abs `  ( F `  M )
)  x.  ( A ^ ( w  -  M ) ) ) )  <->  ( ph  ->  ( abs `  ( F `
 M ) )  <_  ( ( abs `  ( F `  M
) )  x.  ( A ^ ( M  -  M ) ) ) ) ) )
8 2fveq3 5539 . . . . 5  |-  ( w  =  k  ->  ( abs `  ( F `  w ) )  =  ( abs `  ( F `  k )
) )
9 oveq1 5902 . . . . . . 7  |-  ( w  =  k  ->  (
w  -  M )  =  ( k  -  M ) )
109oveq2d 5911 . . . . . 6  |-  ( w  =  k  ->  ( A ^ ( w  -  M ) )  =  ( A ^ (
k  -  M ) ) )
1110oveq2d 5911 . . . . 5  |-  ( w  =  k  ->  (
( abs `  ( F `  M )
)  x.  ( A ^ ( w  -  M ) ) )  =  ( ( abs `  ( F `  M
) )  x.  ( A ^ ( k  -  M ) ) ) )
128, 11breq12d 4031 . . . 4  |-  ( w  =  k  ->  (
( abs `  ( F `  w )
)  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
w  -  M ) ) )  <->  ( abs `  ( F `  k
) )  <_  (
( abs `  ( F `  M )
)  x.  ( A ^ ( k  -  M ) ) ) ) )
1312imbi2d 230 . . 3  |-  ( w  =  k  ->  (
( ph  ->  ( abs `  ( F `  w
) )  <_  (
( abs `  ( F `  M )
)  x.  ( A ^ ( w  -  M ) ) ) )  <->  ( ph  ->  ( abs `  ( F `
 k ) )  <_  ( ( abs `  ( F `  M
) )  x.  ( A ^ ( k  -  M ) ) ) ) ) )
14 2fveq3 5539 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  ( abs `  ( F `  w ) )  =  ( abs `  ( F `  ( k  +  1 ) ) ) )
15 oveq1 5902 . . . . . . 7  |-  ( w  =  ( k  +  1 )  ->  (
w  -  M )  =  ( ( k  +  1 )  -  M ) )
1615oveq2d 5911 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  ( A ^ ( w  -  M ) )  =  ( A ^ (
( k  +  1 )  -  M ) ) )
1716oveq2d 5911 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (
( abs `  ( F `  M )
)  x.  ( A ^ ( w  -  M ) ) )  =  ( ( abs `  ( F `  M
) )  x.  ( A ^ ( ( k  +  1 )  -  M ) ) ) )
1814, 17breq12d 4031 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
( abs `  ( F `  w )
)  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
w  -  M ) ) )  <->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  (
( abs `  ( F `  M )
)  x.  ( A ^ ( ( k  +  1 )  -  M ) ) ) ) )
1918imbi2d 230 . . 3  |-  ( w  =  ( k  +  1 )  ->  (
( ph  ->  ( abs `  ( F `  w
) )  <_  (
( abs `  ( F `  M )
)  x.  ( A ^ ( w  -  M ) ) ) )  <->  ( ph  ->  ( abs `  ( F `
 ( k  +  1 ) ) )  <_  ( ( abs `  ( F `  M
) )  x.  ( A ^ ( ( k  +  1 )  -  M ) ) ) ) ) )
20 2fveq3 5539 . . . . 5  |-  ( w  =  N  ->  ( abs `  ( F `  w ) )  =  ( abs `  ( F `  N )
) )
21 oveq1 5902 . . . . . . 7  |-  ( w  =  N  ->  (
w  -  M )  =  ( N  -  M ) )
2221oveq2d 5911 . . . . . 6  |-  ( w  =  N  ->  ( A ^ ( w  -  M ) )  =  ( A ^ ( N  -  M )
) )
2322oveq2d 5911 . . . . 5  |-  ( w  =  N  ->  (
( abs `  ( F `  M )
)  x.  ( A ^ ( w  -  M ) ) )  =  ( ( abs `  ( F `  M
) )  x.  ( A ^ ( N  -  M ) ) ) )
2420, 23breq12d 4031 . . . 4  |-  ( w  =  N  ->  (
( abs `  ( F `  w )
)  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
w  -  M ) ) )  <->  ( abs `  ( F `  N
) )  <_  (
( abs `  ( F `  M )
)  x.  ( A ^ ( N  -  M ) ) ) ) )
2524imbi2d 230 . . 3  |-  ( w  =  N  ->  (
( ph  ->  ( abs `  ( F `  w
) )  <_  (
( abs `  ( F `  M )
)  x.  ( A ^ ( w  -  M ) ) ) )  <->  ( ph  ->  ( abs `  ( F `
 N ) )  <_  ( ( abs `  ( F `  M
) )  x.  ( A ^ ( N  -  M ) ) ) ) ) )
26 fveq2 5534 . . . . . . . . 9  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
2726eleq1d 2258 . . . . . . . 8  |-  ( k  =  M  ->  (
( F `  k
)  e.  CC  <->  ( F `  M )  e.  CC ) )
28 cvgratnn.6 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
2928ralrimiva 2563 . . . . . . . 8  |-  ( ph  ->  A. k  e.  NN  ( F `  k )  e.  CC )
30 cvgratnn.m . . . . . . . 8  |-  ( ph  ->  M  e.  NN )
3127, 29, 30rspcdva 2861 . . . . . . 7  |-  ( ph  ->  ( F `  M
)  e.  CC )
3231abscld 11221 . . . . . 6  |-  ( ph  ->  ( abs `  ( F `  M )
)  e.  RR )
3332leidd 8500 . . . . 5  |-  ( ph  ->  ( abs `  ( F `  M )
)  <_  ( abs `  ( F `  M
) ) )
3430nncnd 8962 . . . . . . . . . 10  |-  ( ph  ->  M  e.  CC )
3534subidd 8285 . . . . . . . . 9  |-  ( ph  ->  ( M  -  M
)  =  0 )
3635oveq2d 5911 . . . . . . . 8  |-  ( ph  ->  ( A ^ ( M  -  M )
)  =  ( A ^ 0 ) )
37 cvgratnn.3 . . . . . . . . . 10  |-  ( ph  ->  A  e.  RR )
3837recnd 8015 . . . . . . . . 9  |-  ( ph  ->  A  e.  CC )
3938exp0d 10678 . . . . . . . 8  |-  ( ph  ->  ( A ^ 0 )  =  1 )
4036, 39eqtrd 2222 . . . . . . 7  |-  ( ph  ->  ( A ^ ( M  -  M )
)  =  1 )
4140oveq2d 5911 . . . . . 6  |-  ( ph  ->  ( ( abs `  ( F `  M )
)  x.  ( A ^ ( M  -  M ) ) )  =  ( ( abs `  ( F `  M
) )  x.  1 ) )
4232recnd 8015 . . . . . . 7  |-  ( ph  ->  ( abs `  ( F `  M )
)  e.  CC )
4342mulridd 8003 . . . . . 6  |-  ( ph  ->  ( ( abs `  ( F `  M )
)  x.  1 )  =  ( abs `  ( F `  M )
) )
4441, 43eqtrd 2222 . . . . 5  |-  ( ph  ->  ( ( abs `  ( F `  M )
)  x.  ( A ^ ( M  -  M ) ) )  =  ( abs `  ( F `  M )
) )
4533, 44breqtrrd 4046 . . . 4  |-  ( ph  ->  ( abs `  ( F `  M )
)  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ ( M  -  M )
) ) )
4645a1i 9 . . 3  |-  ( M  e.  ZZ  ->  ( ph  ->  ( abs `  ( F `  M )
)  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ ( M  -  M )
) ) ) )
47 eluznn 9629 . . . . . . . . . . 11  |-  ( ( M  e.  NN  /\  k  e.  ( ZZ>= `  M ) )  -> 
k  e.  NN )
4830, 47sylan 283 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  k  e.  NN )
4948, 28syldan 282 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
5049abscld 11221 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( abs `  ( F `  k
) )  e.  RR )
5132adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( abs `  ( F `  M
) )  e.  RR )
5237adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  A  e.  RR )
53 uznn0sub 9588 . . . . . . . . . . 11  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( k  -  M )  e.  NN0 )
5453adantl 277 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( k  -  M )  e.  NN0 )
5552, 54reexpcld 10701 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( A ^ ( k  -  M ) )  e.  RR )
5651, 55remulcld 8017 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
k  -  M ) ) )  e.  RR )
57 0red 7987 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  0  e.  RR )
58 cvgratnn.gt0 . . . . . . . . . 10  |-  ( ph  ->  0  <  A )
5958adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  0  <  A )
6057, 52, 59ltled 8105 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  0  <_  A )
61 lemul2a 8845 . . . . . . . . 9  |-  ( ( ( ( abs `  ( F `  k )
)  e.  RR  /\  ( ( abs `  ( F `  M )
)  x.  ( A ^ ( k  -  M ) ) )  e.  RR  /\  ( A  e.  RR  /\  0  <_  A ) )  /\  ( abs `  ( F `
 k ) )  <_  ( ( abs `  ( F `  M
) )  x.  ( A ^ ( k  -  M ) ) ) )  ->  ( A  x.  ( abs `  ( F `  k )
) )  <_  ( A  x.  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
k  -  M ) ) ) ) )
6261ex 115 . . . . . . . 8  |-  ( ( ( abs `  ( F `  k )
)  e.  RR  /\  ( ( abs `  ( F `  M )
)  x.  ( A ^ ( k  -  M ) ) )  e.  RR  /\  ( A  e.  RR  /\  0  <_  A ) )  -> 
( ( abs `  ( F `  k )
)  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
k  -  M ) ) )  ->  ( A  x.  ( abs `  ( F `  k
) ) )  <_ 
( A  x.  (
( abs `  ( F `  M )
)  x.  ( A ^ ( k  -  M ) ) ) ) ) )
6350, 56, 52, 60, 62syl112anc 1253 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( abs `  ( F `  k ) )  <_ 
( ( abs `  ( F `  M )
)  x.  ( A ^ ( k  -  M ) ) )  ->  ( A  x.  ( abs `  ( F `
 k ) ) )  <_  ( A  x.  ( ( abs `  ( F `  M )
)  x.  ( A ^ ( k  -  M ) ) ) ) ) )
6438adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  A  e.  CC )
6542adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( abs `  ( F `  M
) )  e.  CC )
6655recnd 8015 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( A ^ ( k  -  M ) )  e.  CC )
6764, 65, 66mul12d 8138 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( A  x.  ( ( abs `  ( F `  M )
)  x.  ( A ^ ( k  -  M ) ) ) )  =  ( ( abs `  ( F `
 M ) )  x.  ( A  x.  ( A ^ ( k  -  M ) ) ) ) )
6864, 54expp1d 10685 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( A ^ ( ( k  -  M )  +  1 ) )  =  ( ( A ^
( k  -  M
) )  x.  A
) )
6948nncnd 8962 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  k  e.  CC )
70 1cnd 8002 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  1  e.  CC )
71 eluzel2 9562 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
7271adantl 277 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  M  e.  ZZ )
7372zcnd 9405 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  M  e.  CC )
7469, 70, 73addsubd 8318 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
k  +  1 )  -  M )  =  ( ( k  -  M )  +  1 ) )
7574oveq2d 5911 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( A ^ ( ( k  +  1 )  -  M ) )  =  ( A ^ (
( k  -  M
)  +  1 ) ) )
7664, 66mulcomd 8008 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( A  x.  ( A ^ (
k  -  M ) ) )  =  ( ( A ^ (
k  -  M ) )  x.  A ) )
7768, 75, 763eqtr4rd 2233 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( A  x.  ( A ^ (
k  -  M ) ) )  =  ( A ^ ( ( k  +  1 )  -  M ) ) )
7877oveq2d 5911 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( abs `  ( F `  M ) )  x.  ( A  x.  ( A ^ ( k  -  M ) ) ) )  =  ( ( abs `  ( F `
 M ) )  x.  ( A ^
( ( k  +  1 )  -  M
) ) ) )
7967, 78eqtrd 2222 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( A  x.  ( ( abs `  ( F `  M )
)  x.  ( A ^ ( k  -  M ) ) ) )  =  ( ( abs `  ( F `
 M ) )  x.  ( A ^
( ( k  +  1 )  -  M
) ) ) )
8079breq2d 4030 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( A  x.  ( abs `  ( F `  k
) ) )  <_ 
( A  x.  (
( abs `  ( F `  M )
)  x.  ( A ^ ( k  -  M ) ) ) )  <->  ( A  x.  ( abs `  ( F `
 k ) ) )  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
( k  +  1 )  -  M ) ) ) ) )
8163, 80sylibd 149 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( abs `  ( F `  k ) )  <_ 
( ( abs `  ( F `  M )
)  x.  ( A ^ ( k  -  M ) ) )  ->  ( A  x.  ( abs `  ( F `
 k ) ) )  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
( k  +  1 )  -  M ) ) ) ) )
82 cvgratnn.7 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
8348, 82syldan 282 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
84 fveq2 5534 . . . . . . . . . . 11  |-  ( n  =  ( k  +  1 )  ->  ( F `  n )  =  ( F `  ( k  +  1 ) ) )
8584eleq1d 2258 . . . . . . . . . 10  |-  ( n  =  ( k  +  1 )  ->  (
( F `  n
)  e.  CC  <->  ( F `  ( k  +  1 ) )  e.  CC ) )
86 fveq2 5534 . . . . . . . . . . . . . 14  |-  ( k  =  n  ->  ( F `  k )  =  ( F `  n ) )
8786eleq1d 2258 . . . . . . . . . . . . 13  |-  ( k  =  n  ->  (
( F `  k
)  e.  CC  <->  ( F `  n )  e.  CC ) )
8887cbvralv 2718 . . . . . . . . . . . 12  |-  ( A. k  e.  NN  ( F `  k )  e.  CC  <->  A. n  e.  NN  ( F `  n )  e.  CC )
8929, 88sylib 122 . . . . . . . . . . 11  |-  ( ph  ->  A. n  e.  NN  ( F `  n )  e.  CC )
9089adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  A. n  e.  NN  ( F `  n )  e.  CC )
9148peano2nnd 8963 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( k  +  1 )  e.  NN )
9285, 90, 91rspcdva 2861 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  ( k  +  1 ) )  e.  CC )
9392abscld 11221 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( abs `  ( F `  (
k  +  1 ) ) )  e.  RR )
9452, 50remulcld 8017 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( A  x.  ( abs `  ( F `  k )
) )  e.  RR )
95 peano2uz 9612 . . . . . . . . . . . 12  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( k  +  1 )  e.  ( ZZ>= `  M )
)
9695adantl 277 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( k  +  1 )  e.  ( ZZ>= `  M )
)
97 uznn0sub 9588 . . . . . . . . . . 11  |-  ( ( k  +  1 )  e.  ( ZZ>= `  M
)  ->  ( (
k  +  1 )  -  M )  e. 
NN0 )
9896, 97syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
k  +  1 )  -  M )  e. 
NN0 )
9952, 98reexpcld 10701 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( A ^ ( ( k  +  1 )  -  M ) )  e.  RR )
10051, 99remulcld 8017 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
( k  +  1 )  -  M ) ) )  e.  RR )
101 letr 8069 . . . . . . . 8  |-  ( ( ( abs `  ( F `  ( k  +  1 ) ) )  e.  RR  /\  ( A  x.  ( abs `  ( F `  k ) ) )  e.  RR  /\  (
( abs `  ( F `  M )
)  x.  ( A ^ ( ( k  +  1 )  -  M ) ) )  e.  RR )  -> 
( ( ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) )  /\  ( A  x.  ( abs `  ( F `  k ) ) )  <_  ( ( abs `  ( F `  M
) )  x.  ( A ^ ( ( k  +  1 )  -  M ) ) ) )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  (
( abs `  ( F `  M )
)  x.  ( A ^ ( ( k  +  1 )  -  M ) ) ) ) )
10293, 94, 100, 101syl3anc 1249 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
( abs `  ( F `  ( k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k )
) )  /\  ( A  x.  ( abs `  ( F `  k
) ) )  <_ 
( ( abs `  ( F `  M )
)  x.  ( A ^ ( ( k  +  1 )  -  M ) ) ) )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  (
( abs `  ( F `  M )
)  x.  ( A ^ ( ( k  +  1 )  -  M ) ) ) ) )
10383, 102mpand 429 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( A  x.  ( abs `  ( F `  k
) ) )  <_ 
( ( abs `  ( F `  M )
)  x.  ( A ^ ( ( k  +  1 )  -  M ) ) )  ->  ( abs `  ( F `  ( k  +  1 ) ) )  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
( k  +  1 )  -  M ) ) ) ) )
10481, 103syld 45 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( abs `  ( F `  k ) )  <_ 
( ( abs `  ( F `  M )
)  x.  ( A ^ ( k  -  M ) ) )  ->  ( abs `  ( F `  ( k  +  1 ) ) )  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
( k  +  1 )  -  M ) ) ) ) )
105104expcom 116 . . . 4  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( ( abs `  ( F `  k )
)  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
k  -  M ) ) )  ->  ( abs `  ( F `  ( k  +  1 ) ) )  <_ 
( ( abs `  ( F `  M )
)  x.  ( A ^ ( ( k  +  1 )  -  M ) ) ) ) ) )
106105a2d 26 . . 3  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ( ph  ->  ( abs `  ( F `  k )
)  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ (
k  -  M ) ) ) )  -> 
( ph  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  (
( abs `  ( F `  M )
)  x.  ( A ^ ( ( k  +  1 )  -  M ) ) ) ) ) )
1077, 13, 19, 25, 46, 106uzind4 9617 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( abs `  ( F `  N )
)  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ ( N  -  M )
) ) ) )
1081, 107mpcom 36 1  |-  ( ph  ->  ( abs `  ( F `  N )
)  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ ( N  -  M )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2160   A.wral 2468   class class class wbr 4018   ` cfv 5235  (class class class)co 5895   CCcc 7838   RRcr 7839   0cc0 7840   1c1 7841    + caddc 7843    x. cmul 7845    < clt 8021    <_ cle 8022    - cmin 8157   NNcn 8948   NN0cn0 9205   ZZcz 9282   ZZ>=cuz 9557   ^cexp 10549   abscabs 11037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7931  ax-resscn 7932  ax-1cn 7933  ax-1re 7934  ax-icn 7935  ax-addcl 7936  ax-addrcl 7937  ax-mulcl 7938  ax-mulrcl 7939  ax-addcom 7940  ax-mulcom 7941  ax-addass 7942  ax-mulass 7943  ax-distr 7944  ax-i2m1 7945  ax-0lt1 7946  ax-1rid 7947  ax-0id 7948  ax-rnegex 7949  ax-precex 7950  ax-cnre 7951  ax-pre-ltirr 7952  ax-pre-ltwlin 7953  ax-pre-lttrn 7954  ax-pre-apti 7955  ax-pre-ltadd 7956  ax-pre-mulgt0 7957  ax-pre-mulext 7958  ax-arch 7959  ax-caucvg 7960
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5851  df-ov 5898  df-oprab 5899  df-mpo 5900  df-1st 6164  df-2nd 6165  df-recs 6329  df-frec 6415  df-pnf 8023  df-mnf 8024  df-xr 8025  df-ltxr 8026  df-le 8027  df-sub 8159  df-neg 8160  df-reap 8561  df-ap 8568  df-div 8659  df-inn 8949  df-2 9007  df-3 9008  df-4 9009  df-n0 9206  df-z 9283  df-uz 9558  df-rp 9683  df-seqfrec 10476  df-exp 10550  df-cj 10882  df-re 10883  df-im 10884  df-rsqrt 11038  df-abs 11039
This theorem is referenced by:  cvgratnnlemabsle  11566
  Copyright terms: Public domain W3C validator