Proof of Theorem 2sqlem4
| Step | Hyp | Ref
| Expression |
| 1 | | 2sq.1 |
. . 3
              |
| 2 | | 2sqlem5.1 |
. . . 4
   |
| 3 | 2 | adantr 276 |
. . 3
 
      
  |
| 4 | | 2sqlem5.2 |
. . . 4
   |
| 5 | 4 | adantr 276 |
. . 3
 
      
  |
| 6 | | 2sqlem4.3 |
. . . 4
   |
| 7 | 6 | adantr 276 |
. . 3
 
      
  |
| 8 | | 2sqlem4.4 |
. . . 4
   |
| 9 | 8 | adantr 276 |
. . 3
 
      
  |
| 10 | | 2sqlem4.5 |
. . . 4
   |
| 11 | 10 | adantr 276 |
. . 3
 
      
  |
| 12 | | 2sqlem4.6 |
. . . 4
   |
| 13 | 12 | adantr 276 |
. . 3
 
      
  |
| 14 | | 2sqlem4.7 |
. . . 4
               |
| 15 | 14 | adantr 276 |
. . 3
 
      
              |
| 16 | | 2sqlem4.8 |
. . . 4
             |
| 17 | 16 | adantr 276 |
. . 3
 
      
            |
| 18 | | simpr 110 |
. . 3
 
      
        |
| 19 | 1, 3, 5, 7, 9, 11,
13, 15, 17, 18 | 2sqlem3 15358 |
. 2
 
      
  |
| 20 | 2 | adantr 276 |
. . 3
 
      
  |
| 21 | 4 | adantr 276 |
. . 3
 
      
  |
| 22 | 6 | znegcld 9450 |
. . . 4
    |
| 23 | 22 | adantr 276 |
. . 3
 
      
   |
| 24 | 8 | adantr 276 |
. . 3
 
      
  |
| 25 | 10 | adantr 276 |
. . 3
 
      
  |
| 26 | 12 | adantr 276 |
. . 3
 
      
  |
| 27 | 6 | zcnd 9449 |
. . . . . . 7
   |
| 28 | | sqneg 10690 |
. . . . . . 7
            |
| 29 | 27, 28 | syl 14 |
. . . . . 6
            |
| 30 | 29 | oveq1d 5937 |
. . . . 5
                        |
| 31 | 14, 30 | eqtr4d 2232 |
. . . 4
                |
| 32 | 31 | adantr 276 |
. . 3
 
      
               |
| 33 | 16 | adantr 276 |
. . 3
 
      
            |
| 34 | 12 | zcnd 9449 |
. . . . . . . 8
   |
| 35 | 27, 34 | mulneg1d 8437 |
. . . . . . 7
     
   |
| 36 | 35 | oveq2d 5938 |
. . . . . 6
            
    |
| 37 | 10, 8 | zmulcld 9454 |
. . . . . . . 8
     |
| 38 | 37 | zcnd 9449 |
. . . . . . 7
     |
| 39 | 6, 12 | zmulcld 9454 |
. . . . . . . 8
     |
| 40 | 39 | zcnd 9449 |
. . . . . . 7
     |
| 41 | 38, 40 | negsubd 8343 |
. . . . . 6
     
          |
| 42 | 36, 41 | eqtrd 2229 |
. . . . 5
                |
| 43 | 42 | breq2d 4045 |
. . . 4
      
 
         |
| 44 | 43 | biimpar 297 |
. . 3
 
      
    
    |
| 45 | 1, 20, 21, 23, 24, 25, 26, 32, 33, 44 | 2sqlem3 15358 |
. 2
 
      
  |
| 46 | | prmz 12279 |
. . . . . 6

  |
| 47 | 4, 46 | syl 14 |
. . . . 5
   |
| 48 | | zsqcl 10702 |
. . . . . . . 8
       |
| 49 | 10, 48 | syl 14 |
. . . . . . 7
       |
| 50 | 2 | nnzd 9447 |
. . . . . . 7
   |
| 51 | 49, 50 | zmulcld 9454 |
. . . . . 6
         |
| 52 | | zsqcl 10702 |
. . . . . . 7
       |
| 53 | 6, 52 | syl 14 |
. . . . . 6
       |
| 54 | 51, 53 | zsubcld 9453 |
. . . . 5
               |
| 55 | | dvdsmul1 11978 |
. . . . 5
                               |
| 56 | 47, 54, 55 | syl2anc 411 |
. . . 4
                 |
| 57 | 10, 6 | zmulcld 9454 |
. . . . . . . . 9
     |
| 58 | 57 | zcnd 9449 |
. . . . . . . 8
     |
| 59 | 58 | sqcld 10763 |
. . . . . . 7
         |
| 60 | 38 | sqcld 10763 |
. . . . . . 7
         |
| 61 | 40 | sqcld 10763 |
. . . . . . 7
         |
| 62 | 59, 60, 61 | pnpcand 8374 |
. . . . . 6
                                               |
| 63 | 10 | zcnd 9449 |
. . . . . . . . . . . 12
   |
| 64 | 63, 27 | sqmuld 10777 |
. . . . . . . . . . 11
                   |
| 65 | 8 | zcnd 9449 |
. . . . . . . . . . . 12
   |
| 66 | 63, 65 | sqmuld 10777 |
. . . . . . . . . . 11
                   |
| 67 | 64, 66 | oveq12d 5940 |
. . . . . . . . . 10
                                       |
| 68 | 63 | sqcld 10763 |
. . . . . . . . . . 11
       |
| 69 | 53 | zcnd 9449 |
. . . . . . . . . . 11
       |
| 70 | 65 | sqcld 10763 |
. . . . . . . . . . 11
       |
| 71 | 68, 69, 70 | adddid 8051 |
. . . . . . . . . 10
                                         |
| 72 | 67, 71 | eqtr4d 2232 |
. . . . . . . . 9
                                 |
| 73 | 2 | nncnd 9004 |
. . . . . . . . . . . . 13
   |
| 74 | 47 | zcnd 9449 |
. . . . . . . . . . . . 13
   |
| 75 | 73, 74 | mulcomd 8048 |
. . . . . . . . . . . 12
       |
| 76 | 14, 75 | eqtr3d 2231 |
. . . . . . . . . . 11
               |
| 77 | 76 | oveq2d 5938 |
. . . . . . . . . 10
                           |
| 78 | 68, 74, 73 | mul12d 8178 |
. . . . . . . . . 10
      
            |
| 79 | 77, 78 | eqtrd 2229 |
. . . . . . . . 9
                           |
| 80 | 72, 79 | eqtrd 2229 |
. . . . . . . 8
                         |
| 81 | 27, 34 | sqmuld 10777 |
. . . . . . . . . . . 12
                   |
| 82 | 34 | sqcld 10763 |
. . . . . . . . . . . . 13
       |
| 83 | 69, 82 | mulcomd 8048 |
. . . . . . . . . . . 12
                       |
| 84 | 81, 83 | eqtrd 2229 |
. . . . . . . . . . 11
                   |
| 85 | 64, 84 | oveq12d 5940 |
. . . . . . . . . 10
                                       |
| 86 | 49 | zcnd 9449 |
. . . . . . . . . . 11
       |
| 87 | 86, 82, 69 | adddird 8052 |
. . . . . . . . . 10
                                         |
| 88 | 85, 87 | eqtr4d 2232 |
. . . . . . . . 9
                                 |
| 89 | 16 | oveq1d 5937 |
. . . . . . . . 9
                         |
| 90 | 88, 89 | eqtr4d 2232 |
. . . . . . . 8
                       |
| 91 | 80, 90 | oveq12d 5940 |
. . . . . . 7
                                                 |
| 92 | 51 | zcnd 9449 |
. . . . . . . 8
         |
| 93 | 74, 92, 69 | subdid 8440 |
. . . . . . 7
                                 |
| 94 | 91, 93 | eqtr4d 2232 |
. . . . . 6
                                               |
| 95 | 62, 94 | eqtr3d 2231 |
. . . . 5
                               |
| 96 | | subsq 10738 |
. . . . . 6
    
                                |
| 97 | 38, 40, 96 | syl2anc 411 |
. . . . 5
                         
     |
| 98 | 95, 97 | eqtr3d 2231 |
. . . 4
                         
     |
| 99 | 56, 98 | breqtrd 4059 |
. . 3
           
     |
| 100 | 37, 39 | zaddcld 9452 |
. . . 4
         |
| 101 | 37, 39 | zsubcld 9453 |
. . . 4
    
    |
| 102 | | euclemma 12314 |
. . . 4
                                               |
| 103 | 4, 100, 101, 102 | syl3anc 1249 |
. . 3
                                 |
| 104 | 99, 103 | mpbid 147 |
. 2
                 |
| 105 | 19, 45, 104 | mpjaodan 799 |
1
   |