ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2sqlem4 Unicode version

Theorem 2sqlem4 15710
Description: Lemma for 2sqlem5 15711. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
2sq.1  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
2sqlem5.1  |-  ( ph  ->  N  e.  NN )
2sqlem5.2  |-  ( ph  ->  P  e.  Prime )
2sqlem4.3  |-  ( ph  ->  A  e.  ZZ )
2sqlem4.4  |-  ( ph  ->  B  e.  ZZ )
2sqlem4.5  |-  ( ph  ->  C  e.  ZZ )
2sqlem4.6  |-  ( ph  ->  D  e.  ZZ )
2sqlem4.7  |-  ( ph  ->  ( N  x.  P
)  =  ( ( A ^ 2 )  +  ( B ^
2 ) ) )
2sqlem4.8  |-  ( ph  ->  P  =  ( ( C ^ 2 )  +  ( D ^
2 ) ) )
Assertion
Ref Expression
2sqlem4  |-  ( ph  ->  N  e.  S )

Proof of Theorem 2sqlem4
StepHypRef Expression
1 2sq.1 . . 3  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
2 2sqlem5.1 . . . 4  |-  ( ph  ->  N  e.  NN )
32adantr 276 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  +  ( A  x.  D ) ) )  ->  N  e.  NN )
4 2sqlem5.2 . . . 4  |-  ( ph  ->  P  e.  Prime )
54adantr 276 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  +  ( A  x.  D ) ) )  ->  P  e.  Prime )
6 2sqlem4.3 . . . 4  |-  ( ph  ->  A  e.  ZZ )
76adantr 276 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  +  ( A  x.  D ) ) )  ->  A  e.  ZZ )
8 2sqlem4.4 . . . 4  |-  ( ph  ->  B  e.  ZZ )
98adantr 276 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  +  ( A  x.  D ) ) )  ->  B  e.  ZZ )
10 2sqlem4.5 . . . 4  |-  ( ph  ->  C  e.  ZZ )
1110adantr 276 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  +  ( A  x.  D ) ) )  ->  C  e.  ZZ )
12 2sqlem4.6 . . . 4  |-  ( ph  ->  D  e.  ZZ )
1312adantr 276 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  +  ( A  x.  D ) ) )  ->  D  e.  ZZ )
14 2sqlem4.7 . . . 4  |-  ( ph  ->  ( N  x.  P
)  =  ( ( A ^ 2 )  +  ( B ^
2 ) ) )
1514adantr 276 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  +  ( A  x.  D ) ) )  ->  ( N  x.  P )  =  ( ( A ^ 2 )  +  ( B ^ 2 ) ) )
16 2sqlem4.8 . . . 4  |-  ( ph  ->  P  =  ( ( C ^ 2 )  +  ( D ^
2 ) ) )
1716adantr 276 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  +  ( A  x.  D ) ) )  ->  P  =  ( ( C ^
2 )  +  ( D ^ 2 ) ) )
18 simpr 110 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  +  ( A  x.  D ) ) )  ->  P  ||  (
( C  x.  B
)  +  ( A  x.  D ) ) )
191, 3, 5, 7, 9, 11, 13, 15, 17, 182sqlem3 15709 . 2  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  +  ( A  x.  D ) ) )  ->  N  e.  S )
202adantr 276 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  -  ( A  x.  D ) ) )  ->  N  e.  NN )
214adantr 276 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  -  ( A  x.  D ) ) )  ->  P  e.  Prime )
226znegcld 9532 . . . 4  |-  ( ph  -> 
-u A  e.  ZZ )
2322adantr 276 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  -  ( A  x.  D ) ) )  ->  -u A  e.  ZZ )
248adantr 276 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  -  ( A  x.  D ) ) )  ->  B  e.  ZZ )
2510adantr 276 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  -  ( A  x.  D ) ) )  ->  C  e.  ZZ )
2612adantr 276 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  -  ( A  x.  D ) ) )  ->  D  e.  ZZ )
276zcnd 9531 . . . . . . 7  |-  ( ph  ->  A  e.  CC )
28 sqneg 10780 . . . . . . 7  |-  ( A  e.  CC  ->  ( -u A ^ 2 )  =  ( A ^
2 ) )
2927, 28syl 14 . . . . . 6  |-  ( ph  ->  ( -u A ^
2 )  =  ( A ^ 2 ) )
3029oveq1d 5982 . . . . 5  |-  ( ph  ->  ( ( -u A ^ 2 )  +  ( B ^ 2 ) )  =  ( ( A ^ 2 )  +  ( B ^ 2 ) ) )
3114, 30eqtr4d 2243 . . . 4  |-  ( ph  ->  ( N  x.  P
)  =  ( (
-u A ^ 2 )  +  ( B ^ 2 ) ) )
3231adantr 276 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  -  ( A  x.  D ) ) )  ->  ( N  x.  P )  =  ( ( -u A ^
2 )  +  ( B ^ 2 ) ) )
3316adantr 276 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  -  ( A  x.  D ) ) )  ->  P  =  ( ( C ^
2 )  +  ( D ^ 2 ) ) )
3412zcnd 9531 . . . . . . . 8  |-  ( ph  ->  D  e.  CC )
3527, 34mulneg1d 8518 . . . . . . 7  |-  ( ph  ->  ( -u A  x.  D )  =  -u ( A  x.  D
) )
3635oveq2d 5983 . . . . . 6  |-  ( ph  ->  ( ( C  x.  B )  +  (
-u A  x.  D
) )  =  ( ( C  x.  B
)  +  -u ( A  x.  D )
) )
3710, 8zmulcld 9536 . . . . . . . 8  |-  ( ph  ->  ( C  x.  B
)  e.  ZZ )
3837zcnd 9531 . . . . . . 7  |-  ( ph  ->  ( C  x.  B
)  e.  CC )
396, 12zmulcld 9536 . . . . . . . 8  |-  ( ph  ->  ( A  x.  D
)  e.  ZZ )
4039zcnd 9531 . . . . . . 7  |-  ( ph  ->  ( A  x.  D
)  e.  CC )
4138, 40negsubd 8424 . . . . . 6  |-  ( ph  ->  ( ( C  x.  B )  +  -u ( A  x.  D
) )  =  ( ( C  x.  B
)  -  ( A  x.  D ) ) )
4236, 41eqtrd 2240 . . . . 5  |-  ( ph  ->  ( ( C  x.  B )  +  (
-u A  x.  D
) )  =  ( ( C  x.  B
)  -  ( A  x.  D ) ) )
4342breq2d 4071 . . . 4  |-  ( ph  ->  ( P  ||  (
( C  x.  B
)  +  ( -u A  x.  D )
)  <->  P  ||  ( ( C  x.  B )  -  ( A  x.  D ) ) ) )
4443biimpar 297 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  -  ( A  x.  D ) ) )  ->  P  ||  (
( C  x.  B
)  +  ( -u A  x.  D )
) )
451, 20, 21, 23, 24, 25, 26, 32, 33, 442sqlem3 15709 . 2  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  -  ( A  x.  D ) ) )  ->  N  e.  S )
46 prmz 12548 . . . . . 6  |-  ( P  e.  Prime  ->  P  e.  ZZ )
474, 46syl 14 . . . . 5  |-  ( ph  ->  P  e.  ZZ )
48 zsqcl 10792 . . . . . . . 8  |-  ( C  e.  ZZ  ->  ( C ^ 2 )  e.  ZZ )
4910, 48syl 14 . . . . . . 7  |-  ( ph  ->  ( C ^ 2 )  e.  ZZ )
502nnzd 9529 . . . . . . 7  |-  ( ph  ->  N  e.  ZZ )
5149, 50zmulcld 9536 . . . . . 6  |-  ( ph  ->  ( ( C ^
2 )  x.  N
)  e.  ZZ )
52 zsqcl 10792 . . . . . . 7  |-  ( A  e.  ZZ  ->  ( A ^ 2 )  e.  ZZ )
536, 52syl 14 . . . . . 6  |-  ( ph  ->  ( A ^ 2 )  e.  ZZ )
5451, 53zsubcld 9535 . . . . 5  |-  ( ph  ->  ( ( ( C ^ 2 )  x.  N )  -  ( A ^ 2 ) )  e.  ZZ )
55 dvdsmul1 12239 . . . . 5  |-  ( ( P  e.  ZZ  /\  ( ( ( C ^ 2 )  x.  N )  -  ( A ^ 2 ) )  e.  ZZ )  ->  P  ||  ( P  x.  ( ( ( C ^ 2 )  x.  N )  -  ( A ^ 2 ) ) ) )
5647, 54, 55syl2anc 411 . . . 4  |-  ( ph  ->  P  ||  ( P  x.  ( ( ( C ^ 2 )  x.  N )  -  ( A ^ 2 ) ) ) )
5710, 6zmulcld 9536 . . . . . . . . 9  |-  ( ph  ->  ( C  x.  A
)  e.  ZZ )
5857zcnd 9531 . . . . . . . 8  |-  ( ph  ->  ( C  x.  A
)  e.  CC )
5958sqcld 10853 . . . . . . 7  |-  ( ph  ->  ( ( C  x.  A ) ^ 2 )  e.  CC )
6038sqcld 10853 . . . . . . 7  |-  ( ph  ->  ( ( C  x.  B ) ^ 2 )  e.  CC )
6140sqcld 10853 . . . . . . 7  |-  ( ph  ->  ( ( A  x.  D ) ^ 2 )  e.  CC )
6259, 60, 61pnpcand 8455 . . . . . 6  |-  ( ph  ->  ( ( ( ( C  x.  A ) ^ 2 )  +  ( ( C  x.  B ) ^ 2 ) )  -  (
( ( C  x.  A ) ^ 2 )  +  ( ( A  x.  D ) ^ 2 ) ) )  =  ( ( ( C  x.  B
) ^ 2 )  -  ( ( A  x.  D ) ^
2 ) ) )
6310zcnd 9531 . . . . . . . . . . . 12  |-  ( ph  ->  C  e.  CC )
6463, 27sqmuld 10867 . . . . . . . . . . 11  |-  ( ph  ->  ( ( C  x.  A ) ^ 2 )  =  ( ( C ^ 2 )  x.  ( A ^
2 ) ) )
658zcnd 9531 . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  CC )
6663, 65sqmuld 10867 . . . . . . . . . . 11  |-  ( ph  ->  ( ( C  x.  B ) ^ 2 )  =  ( ( C ^ 2 )  x.  ( B ^
2 ) ) )
6764, 66oveq12d 5985 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( C  x.  A ) ^
2 )  +  ( ( C  x.  B
) ^ 2 ) )  =  ( ( ( C ^ 2 )  x.  ( A ^ 2 ) )  +  ( ( C ^ 2 )  x.  ( B ^ 2 ) ) ) )
6863sqcld 10853 . . . . . . . . . . 11  |-  ( ph  ->  ( C ^ 2 )  e.  CC )
6953zcnd 9531 . . . . . . . . . . 11  |-  ( ph  ->  ( A ^ 2 )  e.  CC )
7065sqcld 10853 . . . . . . . . . . 11  |-  ( ph  ->  ( B ^ 2 )  e.  CC )
7168, 69, 70adddid 8132 . . . . . . . . . 10  |-  ( ph  ->  ( ( C ^
2 )  x.  (
( A ^ 2 )  +  ( B ^ 2 ) ) )  =  ( ( ( C ^ 2 )  x.  ( A ^ 2 ) )  +  ( ( C ^ 2 )  x.  ( B ^ 2 ) ) ) )
7267, 71eqtr4d 2243 . . . . . . . . 9  |-  ( ph  ->  ( ( ( C  x.  A ) ^
2 )  +  ( ( C  x.  B
) ^ 2 ) )  =  ( ( C ^ 2 )  x.  ( ( A ^ 2 )  +  ( B ^ 2 ) ) ) )
732nncnd 9085 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  CC )
7447zcnd 9531 . . . . . . . . . . . . 13  |-  ( ph  ->  P  e.  CC )
7573, 74mulcomd 8129 . . . . . . . . . . . 12  |-  ( ph  ->  ( N  x.  P
)  =  ( P  x.  N ) )
7614, 75eqtr3d 2242 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( P  x.  N ) )
7776oveq2d 5983 . . . . . . . . . 10  |-  ( ph  ->  ( ( C ^
2 )  x.  (
( A ^ 2 )  +  ( B ^ 2 ) ) )  =  ( ( C ^ 2 )  x.  ( P  x.  N ) ) )
7868, 74, 73mul12d 8259 . . . . . . . . . 10  |-  ( ph  ->  ( ( C ^
2 )  x.  ( P  x.  N )
)  =  ( P  x.  ( ( C ^ 2 )  x.  N ) ) )
7977, 78eqtrd 2240 . . . . . . . . 9  |-  ( ph  ->  ( ( C ^
2 )  x.  (
( A ^ 2 )  +  ( B ^ 2 ) ) )  =  ( P  x.  ( ( C ^ 2 )  x.  N ) ) )
8072, 79eqtrd 2240 . . . . . . . 8  |-  ( ph  ->  ( ( ( C  x.  A ) ^
2 )  +  ( ( C  x.  B
) ^ 2 ) )  =  ( P  x.  ( ( C ^ 2 )  x.  N ) ) )
8127, 34sqmuld 10867 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( A  x.  D ) ^ 2 )  =  ( ( A ^ 2 )  x.  ( D ^
2 ) ) )
8234sqcld 10853 . . . . . . . . . . . . 13  |-  ( ph  ->  ( D ^ 2 )  e.  CC )
8369, 82mulcomd 8129 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( A ^
2 )  x.  ( D ^ 2 ) )  =  ( ( D ^ 2 )  x.  ( A ^ 2 ) ) )
8481, 83eqtrd 2240 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A  x.  D ) ^ 2 )  =  ( ( D ^ 2 )  x.  ( A ^
2 ) ) )
8564, 84oveq12d 5985 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( C  x.  A ) ^
2 )  +  ( ( A  x.  D
) ^ 2 ) )  =  ( ( ( C ^ 2 )  x.  ( A ^ 2 ) )  +  ( ( D ^ 2 )  x.  ( A ^ 2 ) ) ) )
8649zcnd 9531 . . . . . . . . . . 11  |-  ( ph  ->  ( C ^ 2 )  e.  CC )
8786, 82, 69adddird 8133 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( C ^ 2 )  +  ( D ^ 2 ) )  x.  ( A ^ 2 ) )  =  ( ( ( C ^ 2 )  x.  ( A ^
2 ) )  +  ( ( D ^
2 )  x.  ( A ^ 2 ) ) ) )
8885, 87eqtr4d 2243 . . . . . . . . 9  |-  ( ph  ->  ( ( ( C  x.  A ) ^
2 )  +  ( ( A  x.  D
) ^ 2 ) )  =  ( ( ( C ^ 2 )  +  ( D ^ 2 ) )  x.  ( A ^
2 ) ) )
8916oveq1d 5982 . . . . . . . . 9  |-  ( ph  ->  ( P  x.  ( A ^ 2 ) )  =  ( ( ( C ^ 2 )  +  ( D ^
2 ) )  x.  ( A ^ 2 ) ) )
9088, 89eqtr4d 2243 . . . . . . . 8  |-  ( ph  ->  ( ( ( C  x.  A ) ^
2 )  +  ( ( A  x.  D
) ^ 2 ) )  =  ( P  x.  ( A ^
2 ) ) )
9180, 90oveq12d 5985 . . . . . . 7  |-  ( ph  ->  ( ( ( ( C  x.  A ) ^ 2 )  +  ( ( C  x.  B ) ^ 2 ) )  -  (
( ( C  x.  A ) ^ 2 )  +  ( ( A  x.  D ) ^ 2 ) ) )  =  ( ( P  x.  ( ( C ^ 2 )  x.  N ) )  -  ( P  x.  ( A ^ 2 ) ) ) )
9251zcnd 9531 . . . . . . . 8  |-  ( ph  ->  ( ( C ^
2 )  x.  N
)  e.  CC )
9374, 92, 69subdid 8521 . . . . . . 7  |-  ( ph  ->  ( P  x.  (
( ( C ^
2 )  x.  N
)  -  ( A ^ 2 ) ) )  =  ( ( P  x.  ( ( C ^ 2 )  x.  N ) )  -  ( P  x.  ( A ^ 2 ) ) ) )
9491, 93eqtr4d 2243 . . . . . 6  |-  ( ph  ->  ( ( ( ( C  x.  A ) ^ 2 )  +  ( ( C  x.  B ) ^ 2 ) )  -  (
( ( C  x.  A ) ^ 2 )  +  ( ( A  x.  D ) ^ 2 ) ) )  =  ( P  x.  ( ( ( C ^ 2 )  x.  N )  -  ( A ^ 2 ) ) ) )
9562, 94eqtr3d 2242 . . . . 5  |-  ( ph  ->  ( ( ( C  x.  B ) ^
2 )  -  (
( A  x.  D
) ^ 2 ) )  =  ( P  x.  ( ( ( C ^ 2 )  x.  N )  -  ( A ^ 2 ) ) ) )
96 subsq 10828 . . . . . 6  |-  ( ( ( C  x.  B
)  e.  CC  /\  ( A  x.  D
)  e.  CC )  ->  ( ( ( C  x.  B ) ^ 2 )  -  ( ( A  x.  D ) ^ 2 ) )  =  ( ( ( C  x.  B )  +  ( A  x.  D ) )  x.  ( ( C  x.  B )  -  ( A  x.  D ) ) ) )
9738, 40, 96syl2anc 411 . . . . 5  |-  ( ph  ->  ( ( ( C  x.  B ) ^
2 )  -  (
( A  x.  D
) ^ 2 ) )  =  ( ( ( C  x.  B
)  +  ( A  x.  D ) )  x.  ( ( C  x.  B )  -  ( A  x.  D
) ) ) )
9895, 97eqtr3d 2242 . . . 4  |-  ( ph  ->  ( P  x.  (
( ( C ^
2 )  x.  N
)  -  ( A ^ 2 ) ) )  =  ( ( ( C  x.  B
)  +  ( A  x.  D ) )  x.  ( ( C  x.  B )  -  ( A  x.  D
) ) ) )
9956, 98breqtrd 4085 . . 3  |-  ( ph  ->  P  ||  ( ( ( C  x.  B
)  +  ( A  x.  D ) )  x.  ( ( C  x.  B )  -  ( A  x.  D
) ) ) )
10037, 39zaddcld 9534 . . . 4  |-  ( ph  ->  ( ( C  x.  B )  +  ( A  x.  D ) )  e.  ZZ )
10137, 39zsubcld 9535 . . . 4  |-  ( ph  ->  ( ( C  x.  B )  -  ( A  x.  D )
)  e.  ZZ )
102 euclemma 12583 . . . 4  |-  ( ( P  e.  Prime  /\  (
( C  x.  B
)  +  ( A  x.  D ) )  e.  ZZ  /\  (
( C  x.  B
)  -  ( A  x.  D ) )  e.  ZZ )  -> 
( P  ||  (
( ( C  x.  B )  +  ( A  x.  D ) )  x.  ( ( C  x.  B )  -  ( A  x.  D ) ) )  <-> 
( P  ||  (
( C  x.  B
)  +  ( A  x.  D ) )  \/  P  ||  (
( C  x.  B
)  -  ( A  x.  D ) ) ) ) )
1034, 100, 101, 102syl3anc 1250 . . 3  |-  ( ph  ->  ( P  ||  (
( ( C  x.  B )  +  ( A  x.  D ) )  x.  ( ( C  x.  B )  -  ( A  x.  D ) ) )  <-> 
( P  ||  (
( C  x.  B
)  +  ( A  x.  D ) )  \/  P  ||  (
( C  x.  B
)  -  ( A  x.  D ) ) ) ) )
10499, 103mpbid 147 . 2  |-  ( ph  ->  ( P  ||  (
( C  x.  B
)  +  ( A  x.  D ) )  \/  P  ||  (
( C  x.  B
)  -  ( A  x.  D ) ) ) )
10519, 45, 104mpjaodan 800 1  |-  ( ph  ->  N  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373    e. wcel 2178   class class class wbr 4059    |-> cmpt 4121   ran crn 4694   ` cfv 5290  (class class class)co 5967   CCcc 7958    + caddc 7963    x. cmul 7965    - cmin 8278   -ucneg 8279   NNcn 9071   2c2 9122   ZZcz 9407   ^cexp 10720   abscabs 11423    || cdvds 12213   Primecprime 12544   ZZ[_i]cgz 12807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-1o 6525  df-2o 6526  df-er 6643  df-en 6851  df-sup 7112  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-fz 10166  df-fzo 10300  df-fl 10450  df-mod 10505  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-dvds 12214  df-gcd 12390  df-prm 12545  df-gz 12808
This theorem is referenced by:  2sqlem5  15711
  Copyright terms: Public domain W3C validator