Proof of Theorem 2sqlem4
Step | Hyp | Ref
| Expression |
1 | | 2sq.1 |
. . 3
|
2 | | 2sqlem5.1 |
. . . 4
|
3 | 2 | adantr 274 |
. . 3
|
4 | | 2sqlem5.2 |
. . . 4
|
5 | 4 | adantr 274 |
. . 3
|
6 | | 2sqlem4.3 |
. . . 4
|
7 | 6 | adantr 274 |
. . 3
|
8 | | 2sqlem4.4 |
. . . 4
|
9 | 8 | adantr 274 |
. . 3
|
10 | | 2sqlem4.5 |
. . . 4
|
11 | 10 | adantr 274 |
. . 3
|
12 | | 2sqlem4.6 |
. . . 4
|
13 | 12 | adantr 274 |
. . 3
|
14 | | 2sqlem4.7 |
. . . 4
|
15 | 14 | adantr 274 |
. . 3
|
16 | | 2sqlem4.8 |
. . . 4
|
17 | 16 | adantr 274 |
. . 3
|
18 | | simpr 109 |
. . 3
|
19 | 1, 3, 5, 7, 9, 11,
13, 15, 17, 18 | 2sqlem3 13553 |
. 2
|
20 | 2 | adantr 274 |
. . 3
|
21 | 4 | adantr 274 |
. . 3
|
22 | 6 | znegcld 9311 |
. . . 4
|
23 | 22 | adantr 274 |
. . 3
|
24 | 8 | adantr 274 |
. . 3
|
25 | 10 | adantr 274 |
. . 3
|
26 | 12 | adantr 274 |
. . 3
|
27 | 6 | zcnd 9310 |
. . . . . . 7
|
28 | | sqneg 10510 |
. . . . . . 7
|
29 | 27, 28 | syl 14 |
. . . . . 6
|
30 | 29 | oveq1d 5856 |
. . . . 5
|
31 | 14, 30 | eqtr4d 2201 |
. . . 4
|
32 | 31 | adantr 274 |
. . 3
|
33 | 16 | adantr 274 |
. . 3
|
34 | 12 | zcnd 9310 |
. . . . . . . 8
|
35 | 27, 34 | mulneg1d 8305 |
. . . . . . 7
|
36 | 35 | oveq2d 5857 |
. . . . . 6
|
37 | 10, 8 | zmulcld 9315 |
. . . . . . . 8
|
38 | 37 | zcnd 9310 |
. . . . . . 7
|
39 | 6, 12 | zmulcld 9315 |
. . . . . . . 8
|
40 | 39 | zcnd 9310 |
. . . . . . 7
|
41 | 38, 40 | negsubd 8211 |
. . . . . 6
|
42 | 36, 41 | eqtrd 2198 |
. . . . 5
|
43 | 42 | breq2d 3993 |
. . . 4
|
44 | 43 | biimpar 295 |
. . 3
|
45 | 1, 20, 21, 23, 24, 25, 26, 32, 33, 44 | 2sqlem3 13553 |
. 2
|
46 | | prmz 12039 |
. . . . . 6
|
47 | 4, 46 | syl 14 |
. . . . 5
|
48 | | zsqcl 10521 |
. . . . . . . 8
|
49 | 10, 48 | syl 14 |
. . . . . . 7
|
50 | 2 | nnzd 9308 |
. . . . . . 7
|
51 | 49, 50 | zmulcld 9315 |
. . . . . 6
|
52 | | zsqcl 10521 |
. . . . . . 7
|
53 | 6, 52 | syl 14 |
. . . . . 6
|
54 | 51, 53 | zsubcld 9314 |
. . . . 5
|
55 | | dvdsmul1 11749 |
. . . . 5
|
56 | 47, 54, 55 | syl2anc 409 |
. . . 4
|
57 | 10, 6 | zmulcld 9315 |
. . . . . . . . 9
|
58 | 57 | zcnd 9310 |
. . . . . . . 8
|
59 | 58 | sqcld 10582 |
. . . . . . 7
|
60 | 38 | sqcld 10582 |
. . . . . . 7
|
61 | 40 | sqcld 10582 |
. . . . . . 7
|
62 | 59, 60, 61 | pnpcand 8242 |
. . . . . 6
|
63 | 10 | zcnd 9310 |
. . . . . . . . . . . 12
|
64 | 63, 27 | sqmuld 10596 |
. . . . . . . . . . 11
|
65 | 8 | zcnd 9310 |
. . . . . . . . . . . 12
|
66 | 63, 65 | sqmuld 10596 |
. . . . . . . . . . 11
|
67 | 64, 66 | oveq12d 5859 |
. . . . . . . . . 10
|
68 | 63 | sqcld 10582 |
. . . . . . . . . . 11
|
69 | 53 | zcnd 9310 |
. . . . . . . . . . 11
|
70 | 65 | sqcld 10582 |
. . . . . . . . . . 11
|
71 | 68, 69, 70 | adddid 7919 |
. . . . . . . . . 10
|
72 | 67, 71 | eqtr4d 2201 |
. . . . . . . . 9
|
73 | 2 | nncnd 8867 |
. . . . . . . . . . . . 13
|
74 | 47 | zcnd 9310 |
. . . . . . . . . . . . 13
|
75 | 73, 74 | mulcomd 7916 |
. . . . . . . . . . . 12
|
76 | 14, 75 | eqtr3d 2200 |
. . . . . . . . . . 11
|
77 | 76 | oveq2d 5857 |
. . . . . . . . . 10
|
78 | 68, 74, 73 | mul12d 8046 |
. . . . . . . . . 10
|
79 | 77, 78 | eqtrd 2198 |
. . . . . . . . 9
|
80 | 72, 79 | eqtrd 2198 |
. . . . . . . 8
|
81 | 27, 34 | sqmuld 10596 |
. . . . . . . . . . . 12
|
82 | 34 | sqcld 10582 |
. . . . . . . . . . . . 13
|
83 | 69, 82 | mulcomd 7916 |
. . . . . . . . . . . 12
|
84 | 81, 83 | eqtrd 2198 |
. . . . . . . . . . 11
|
85 | 64, 84 | oveq12d 5859 |
. . . . . . . . . 10
|
86 | 49 | zcnd 9310 |
. . . . . . . . . . 11
|
87 | 86, 82, 69 | adddird 7920 |
. . . . . . . . . 10
|
88 | 85, 87 | eqtr4d 2201 |
. . . . . . . . 9
|
89 | 16 | oveq1d 5856 |
. . . . . . . . 9
|
90 | 88, 89 | eqtr4d 2201 |
. . . . . . . 8
|
91 | 80, 90 | oveq12d 5859 |
. . . . . . 7
|
92 | 51 | zcnd 9310 |
. . . . . . . 8
|
93 | 74, 92, 69 | subdid 8308 |
. . . . . . 7
|
94 | 91, 93 | eqtr4d 2201 |
. . . . . 6
|
95 | 62, 94 | eqtr3d 2200 |
. . . . 5
|
96 | | subsq 10557 |
. . . . . 6
|
97 | 38, 40, 96 | syl2anc 409 |
. . . . 5
|
98 | 95, 97 | eqtr3d 2200 |
. . . 4
|
99 | 56, 98 | breqtrd 4007 |
. . 3
|
100 | 37, 39 | zaddcld 9313 |
. . . 4
|
101 | 37, 39 | zsubcld 9314 |
. . . 4
|
102 | | euclemma 12074 |
. . . 4
|
103 | 4, 100, 101, 102 | syl3anc 1228 |
. . 3
|
104 | 99, 103 | mpbid 146 |
. 2
|
105 | 19, 45, 104 | mpjaodan 788 |
1
|