ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2sqlem4 Unicode version

Theorem 2sqlem4 15797
Description: Lemma for 2sqlem5 15798. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
2sq.1  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
2sqlem5.1  |-  ( ph  ->  N  e.  NN )
2sqlem5.2  |-  ( ph  ->  P  e.  Prime )
2sqlem4.3  |-  ( ph  ->  A  e.  ZZ )
2sqlem4.4  |-  ( ph  ->  B  e.  ZZ )
2sqlem4.5  |-  ( ph  ->  C  e.  ZZ )
2sqlem4.6  |-  ( ph  ->  D  e.  ZZ )
2sqlem4.7  |-  ( ph  ->  ( N  x.  P
)  =  ( ( A ^ 2 )  +  ( B ^
2 ) ) )
2sqlem4.8  |-  ( ph  ->  P  =  ( ( C ^ 2 )  +  ( D ^
2 ) ) )
Assertion
Ref Expression
2sqlem4  |-  ( ph  ->  N  e.  S )

Proof of Theorem 2sqlem4
StepHypRef Expression
1 2sq.1 . . 3  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
2 2sqlem5.1 . . . 4  |-  ( ph  ->  N  e.  NN )
32adantr 276 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  +  ( A  x.  D ) ) )  ->  N  e.  NN )
4 2sqlem5.2 . . . 4  |-  ( ph  ->  P  e.  Prime )
54adantr 276 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  +  ( A  x.  D ) ) )  ->  P  e.  Prime )
6 2sqlem4.3 . . . 4  |-  ( ph  ->  A  e.  ZZ )
76adantr 276 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  +  ( A  x.  D ) ) )  ->  A  e.  ZZ )
8 2sqlem4.4 . . . 4  |-  ( ph  ->  B  e.  ZZ )
98adantr 276 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  +  ( A  x.  D ) ) )  ->  B  e.  ZZ )
10 2sqlem4.5 . . . 4  |-  ( ph  ->  C  e.  ZZ )
1110adantr 276 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  +  ( A  x.  D ) ) )  ->  C  e.  ZZ )
12 2sqlem4.6 . . . 4  |-  ( ph  ->  D  e.  ZZ )
1312adantr 276 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  +  ( A  x.  D ) ) )  ->  D  e.  ZZ )
14 2sqlem4.7 . . . 4  |-  ( ph  ->  ( N  x.  P
)  =  ( ( A ^ 2 )  +  ( B ^
2 ) ) )
1514adantr 276 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  +  ( A  x.  D ) ) )  ->  ( N  x.  P )  =  ( ( A ^ 2 )  +  ( B ^ 2 ) ) )
16 2sqlem4.8 . . . 4  |-  ( ph  ->  P  =  ( ( C ^ 2 )  +  ( D ^
2 ) ) )
1716adantr 276 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  +  ( A  x.  D ) ) )  ->  P  =  ( ( C ^
2 )  +  ( D ^ 2 ) ) )
18 simpr 110 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  +  ( A  x.  D ) ) )  ->  P  ||  (
( C  x.  B
)  +  ( A  x.  D ) ) )
191, 3, 5, 7, 9, 11, 13, 15, 17, 182sqlem3 15796 . 2  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  +  ( A  x.  D ) ) )  ->  N  e.  S )
202adantr 276 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  -  ( A  x.  D ) ) )  ->  N  e.  NN )
214adantr 276 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  -  ( A  x.  D ) ) )  ->  P  e.  Prime )
226znegcld 9571 . . . 4  |-  ( ph  -> 
-u A  e.  ZZ )
2322adantr 276 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  -  ( A  x.  D ) ) )  ->  -u A  e.  ZZ )
248adantr 276 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  -  ( A  x.  D ) ) )  ->  B  e.  ZZ )
2510adantr 276 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  -  ( A  x.  D ) ) )  ->  C  e.  ZZ )
2612adantr 276 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  -  ( A  x.  D ) ) )  ->  D  e.  ZZ )
276zcnd 9570 . . . . . . 7  |-  ( ph  ->  A  e.  CC )
28 sqneg 10820 . . . . . . 7  |-  ( A  e.  CC  ->  ( -u A ^ 2 )  =  ( A ^
2 ) )
2927, 28syl 14 . . . . . 6  |-  ( ph  ->  ( -u A ^
2 )  =  ( A ^ 2 ) )
3029oveq1d 6016 . . . . 5  |-  ( ph  ->  ( ( -u A ^ 2 )  +  ( B ^ 2 ) )  =  ( ( A ^ 2 )  +  ( B ^ 2 ) ) )
3114, 30eqtr4d 2265 . . . 4  |-  ( ph  ->  ( N  x.  P
)  =  ( (
-u A ^ 2 )  +  ( B ^ 2 ) ) )
3231adantr 276 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  -  ( A  x.  D ) ) )  ->  ( N  x.  P )  =  ( ( -u A ^
2 )  +  ( B ^ 2 ) ) )
3316adantr 276 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  -  ( A  x.  D ) ) )  ->  P  =  ( ( C ^
2 )  +  ( D ^ 2 ) ) )
3412zcnd 9570 . . . . . . . 8  |-  ( ph  ->  D  e.  CC )
3527, 34mulneg1d 8557 . . . . . . 7  |-  ( ph  ->  ( -u A  x.  D )  =  -u ( A  x.  D
) )
3635oveq2d 6017 . . . . . 6  |-  ( ph  ->  ( ( C  x.  B )  +  (
-u A  x.  D
) )  =  ( ( C  x.  B
)  +  -u ( A  x.  D )
) )
3710, 8zmulcld 9575 . . . . . . . 8  |-  ( ph  ->  ( C  x.  B
)  e.  ZZ )
3837zcnd 9570 . . . . . . 7  |-  ( ph  ->  ( C  x.  B
)  e.  CC )
396, 12zmulcld 9575 . . . . . . . 8  |-  ( ph  ->  ( A  x.  D
)  e.  ZZ )
4039zcnd 9570 . . . . . . 7  |-  ( ph  ->  ( A  x.  D
)  e.  CC )
4138, 40negsubd 8463 . . . . . 6  |-  ( ph  ->  ( ( C  x.  B )  +  -u ( A  x.  D
) )  =  ( ( C  x.  B
)  -  ( A  x.  D ) ) )
4236, 41eqtrd 2262 . . . . 5  |-  ( ph  ->  ( ( C  x.  B )  +  (
-u A  x.  D
) )  =  ( ( C  x.  B
)  -  ( A  x.  D ) ) )
4342breq2d 4095 . . . 4  |-  ( ph  ->  ( P  ||  (
( C  x.  B
)  +  ( -u A  x.  D )
)  <->  P  ||  ( ( C  x.  B )  -  ( A  x.  D ) ) ) )
4443biimpar 297 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  -  ( A  x.  D ) ) )  ->  P  ||  (
( C  x.  B
)  +  ( -u A  x.  D )
) )
451, 20, 21, 23, 24, 25, 26, 32, 33, 442sqlem3 15796 . 2  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  -  ( A  x.  D ) ) )  ->  N  e.  S )
46 prmz 12633 . . . . . 6  |-  ( P  e.  Prime  ->  P  e.  ZZ )
474, 46syl 14 . . . . 5  |-  ( ph  ->  P  e.  ZZ )
48 zsqcl 10832 . . . . . . . 8  |-  ( C  e.  ZZ  ->  ( C ^ 2 )  e.  ZZ )
4910, 48syl 14 . . . . . . 7  |-  ( ph  ->  ( C ^ 2 )  e.  ZZ )
502nnzd 9568 . . . . . . 7  |-  ( ph  ->  N  e.  ZZ )
5149, 50zmulcld 9575 . . . . . 6  |-  ( ph  ->  ( ( C ^
2 )  x.  N
)  e.  ZZ )
52 zsqcl 10832 . . . . . . 7  |-  ( A  e.  ZZ  ->  ( A ^ 2 )  e.  ZZ )
536, 52syl 14 . . . . . 6  |-  ( ph  ->  ( A ^ 2 )  e.  ZZ )
5451, 53zsubcld 9574 . . . . 5  |-  ( ph  ->  ( ( ( C ^ 2 )  x.  N )  -  ( A ^ 2 ) )  e.  ZZ )
55 dvdsmul1 12324 . . . . 5  |-  ( ( P  e.  ZZ  /\  ( ( ( C ^ 2 )  x.  N )  -  ( A ^ 2 ) )  e.  ZZ )  ->  P  ||  ( P  x.  ( ( ( C ^ 2 )  x.  N )  -  ( A ^ 2 ) ) ) )
5647, 54, 55syl2anc 411 . . . 4  |-  ( ph  ->  P  ||  ( P  x.  ( ( ( C ^ 2 )  x.  N )  -  ( A ^ 2 ) ) ) )
5710, 6zmulcld 9575 . . . . . . . . 9  |-  ( ph  ->  ( C  x.  A
)  e.  ZZ )
5857zcnd 9570 . . . . . . . 8  |-  ( ph  ->  ( C  x.  A
)  e.  CC )
5958sqcld 10893 . . . . . . 7  |-  ( ph  ->  ( ( C  x.  A ) ^ 2 )  e.  CC )
6038sqcld 10893 . . . . . . 7  |-  ( ph  ->  ( ( C  x.  B ) ^ 2 )  e.  CC )
6140sqcld 10893 . . . . . . 7  |-  ( ph  ->  ( ( A  x.  D ) ^ 2 )  e.  CC )
6259, 60, 61pnpcand 8494 . . . . . 6  |-  ( ph  ->  ( ( ( ( C  x.  A ) ^ 2 )  +  ( ( C  x.  B ) ^ 2 ) )  -  (
( ( C  x.  A ) ^ 2 )  +  ( ( A  x.  D ) ^ 2 ) ) )  =  ( ( ( C  x.  B
) ^ 2 )  -  ( ( A  x.  D ) ^
2 ) ) )
6310zcnd 9570 . . . . . . . . . . . 12  |-  ( ph  ->  C  e.  CC )
6463, 27sqmuld 10907 . . . . . . . . . . 11  |-  ( ph  ->  ( ( C  x.  A ) ^ 2 )  =  ( ( C ^ 2 )  x.  ( A ^
2 ) ) )
658zcnd 9570 . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  CC )
6663, 65sqmuld 10907 . . . . . . . . . . 11  |-  ( ph  ->  ( ( C  x.  B ) ^ 2 )  =  ( ( C ^ 2 )  x.  ( B ^
2 ) ) )
6764, 66oveq12d 6019 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( C  x.  A ) ^
2 )  +  ( ( C  x.  B
) ^ 2 ) )  =  ( ( ( C ^ 2 )  x.  ( A ^ 2 ) )  +  ( ( C ^ 2 )  x.  ( B ^ 2 ) ) ) )
6863sqcld 10893 . . . . . . . . . . 11  |-  ( ph  ->  ( C ^ 2 )  e.  CC )
6953zcnd 9570 . . . . . . . . . . 11  |-  ( ph  ->  ( A ^ 2 )  e.  CC )
7065sqcld 10893 . . . . . . . . . . 11  |-  ( ph  ->  ( B ^ 2 )  e.  CC )
7168, 69, 70adddid 8171 . . . . . . . . . 10  |-  ( ph  ->  ( ( C ^
2 )  x.  (
( A ^ 2 )  +  ( B ^ 2 ) ) )  =  ( ( ( C ^ 2 )  x.  ( A ^ 2 ) )  +  ( ( C ^ 2 )  x.  ( B ^ 2 ) ) ) )
7267, 71eqtr4d 2265 . . . . . . . . 9  |-  ( ph  ->  ( ( ( C  x.  A ) ^
2 )  +  ( ( C  x.  B
) ^ 2 ) )  =  ( ( C ^ 2 )  x.  ( ( A ^ 2 )  +  ( B ^ 2 ) ) ) )
732nncnd 9124 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  CC )
7447zcnd 9570 . . . . . . . . . . . . 13  |-  ( ph  ->  P  e.  CC )
7573, 74mulcomd 8168 . . . . . . . . . . . 12  |-  ( ph  ->  ( N  x.  P
)  =  ( P  x.  N ) )
7614, 75eqtr3d 2264 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( P  x.  N ) )
7776oveq2d 6017 . . . . . . . . . 10  |-  ( ph  ->  ( ( C ^
2 )  x.  (
( A ^ 2 )  +  ( B ^ 2 ) ) )  =  ( ( C ^ 2 )  x.  ( P  x.  N ) ) )
7868, 74, 73mul12d 8298 . . . . . . . . . 10  |-  ( ph  ->  ( ( C ^
2 )  x.  ( P  x.  N )
)  =  ( P  x.  ( ( C ^ 2 )  x.  N ) ) )
7977, 78eqtrd 2262 . . . . . . . . 9  |-  ( ph  ->  ( ( C ^
2 )  x.  (
( A ^ 2 )  +  ( B ^ 2 ) ) )  =  ( P  x.  ( ( C ^ 2 )  x.  N ) ) )
8072, 79eqtrd 2262 . . . . . . . 8  |-  ( ph  ->  ( ( ( C  x.  A ) ^
2 )  +  ( ( C  x.  B
) ^ 2 ) )  =  ( P  x.  ( ( C ^ 2 )  x.  N ) ) )
8127, 34sqmuld 10907 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( A  x.  D ) ^ 2 )  =  ( ( A ^ 2 )  x.  ( D ^
2 ) ) )
8234sqcld 10893 . . . . . . . . . . . . 13  |-  ( ph  ->  ( D ^ 2 )  e.  CC )
8369, 82mulcomd 8168 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( A ^
2 )  x.  ( D ^ 2 ) )  =  ( ( D ^ 2 )  x.  ( A ^ 2 ) ) )
8481, 83eqtrd 2262 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A  x.  D ) ^ 2 )  =  ( ( D ^ 2 )  x.  ( A ^
2 ) ) )
8564, 84oveq12d 6019 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( C  x.  A ) ^
2 )  +  ( ( A  x.  D
) ^ 2 ) )  =  ( ( ( C ^ 2 )  x.  ( A ^ 2 ) )  +  ( ( D ^ 2 )  x.  ( A ^ 2 ) ) ) )
8649zcnd 9570 . . . . . . . . . . 11  |-  ( ph  ->  ( C ^ 2 )  e.  CC )
8786, 82, 69adddird 8172 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( C ^ 2 )  +  ( D ^ 2 ) )  x.  ( A ^ 2 ) )  =  ( ( ( C ^ 2 )  x.  ( A ^
2 ) )  +  ( ( D ^
2 )  x.  ( A ^ 2 ) ) ) )
8885, 87eqtr4d 2265 . . . . . . . . 9  |-  ( ph  ->  ( ( ( C  x.  A ) ^
2 )  +  ( ( A  x.  D
) ^ 2 ) )  =  ( ( ( C ^ 2 )  +  ( D ^ 2 ) )  x.  ( A ^
2 ) ) )
8916oveq1d 6016 . . . . . . . . 9  |-  ( ph  ->  ( P  x.  ( A ^ 2 ) )  =  ( ( ( C ^ 2 )  +  ( D ^
2 ) )  x.  ( A ^ 2 ) ) )
9088, 89eqtr4d 2265 . . . . . . . 8  |-  ( ph  ->  ( ( ( C  x.  A ) ^
2 )  +  ( ( A  x.  D
) ^ 2 ) )  =  ( P  x.  ( A ^
2 ) ) )
9180, 90oveq12d 6019 . . . . . . 7  |-  ( ph  ->  ( ( ( ( C  x.  A ) ^ 2 )  +  ( ( C  x.  B ) ^ 2 ) )  -  (
( ( C  x.  A ) ^ 2 )  +  ( ( A  x.  D ) ^ 2 ) ) )  =  ( ( P  x.  ( ( C ^ 2 )  x.  N ) )  -  ( P  x.  ( A ^ 2 ) ) ) )
9251zcnd 9570 . . . . . . . 8  |-  ( ph  ->  ( ( C ^
2 )  x.  N
)  e.  CC )
9374, 92, 69subdid 8560 . . . . . . 7  |-  ( ph  ->  ( P  x.  (
( ( C ^
2 )  x.  N
)  -  ( A ^ 2 ) ) )  =  ( ( P  x.  ( ( C ^ 2 )  x.  N ) )  -  ( P  x.  ( A ^ 2 ) ) ) )
9491, 93eqtr4d 2265 . . . . . 6  |-  ( ph  ->  ( ( ( ( C  x.  A ) ^ 2 )  +  ( ( C  x.  B ) ^ 2 ) )  -  (
( ( C  x.  A ) ^ 2 )  +  ( ( A  x.  D ) ^ 2 ) ) )  =  ( P  x.  ( ( ( C ^ 2 )  x.  N )  -  ( A ^ 2 ) ) ) )
9562, 94eqtr3d 2264 . . . . 5  |-  ( ph  ->  ( ( ( C  x.  B ) ^
2 )  -  (
( A  x.  D
) ^ 2 ) )  =  ( P  x.  ( ( ( C ^ 2 )  x.  N )  -  ( A ^ 2 ) ) ) )
96 subsq 10868 . . . . . 6  |-  ( ( ( C  x.  B
)  e.  CC  /\  ( A  x.  D
)  e.  CC )  ->  ( ( ( C  x.  B ) ^ 2 )  -  ( ( A  x.  D ) ^ 2 ) )  =  ( ( ( C  x.  B )  +  ( A  x.  D ) )  x.  ( ( C  x.  B )  -  ( A  x.  D ) ) ) )
9738, 40, 96syl2anc 411 . . . . 5  |-  ( ph  ->  ( ( ( C  x.  B ) ^
2 )  -  (
( A  x.  D
) ^ 2 ) )  =  ( ( ( C  x.  B
)  +  ( A  x.  D ) )  x.  ( ( C  x.  B )  -  ( A  x.  D
) ) ) )
9895, 97eqtr3d 2264 . . . 4  |-  ( ph  ->  ( P  x.  (
( ( C ^
2 )  x.  N
)  -  ( A ^ 2 ) ) )  =  ( ( ( C  x.  B
)  +  ( A  x.  D ) )  x.  ( ( C  x.  B )  -  ( A  x.  D
) ) ) )
9956, 98breqtrd 4109 . . 3  |-  ( ph  ->  P  ||  ( ( ( C  x.  B
)  +  ( A  x.  D ) )  x.  ( ( C  x.  B )  -  ( A  x.  D
) ) ) )
10037, 39zaddcld 9573 . . . 4  |-  ( ph  ->  ( ( C  x.  B )  +  ( A  x.  D ) )  e.  ZZ )
10137, 39zsubcld 9574 . . . 4  |-  ( ph  ->  ( ( C  x.  B )  -  ( A  x.  D )
)  e.  ZZ )
102 euclemma 12668 . . . 4  |-  ( ( P  e.  Prime  /\  (
( C  x.  B
)  +  ( A  x.  D ) )  e.  ZZ  /\  (
( C  x.  B
)  -  ( A  x.  D ) )  e.  ZZ )  -> 
( P  ||  (
( ( C  x.  B )  +  ( A  x.  D ) )  x.  ( ( C  x.  B )  -  ( A  x.  D ) ) )  <-> 
( P  ||  (
( C  x.  B
)  +  ( A  x.  D ) )  \/  P  ||  (
( C  x.  B
)  -  ( A  x.  D ) ) ) ) )
1034, 100, 101, 102syl3anc 1271 . . 3  |-  ( ph  ->  ( P  ||  (
( ( C  x.  B )  +  ( A  x.  D ) )  x.  ( ( C  x.  B )  -  ( A  x.  D ) ) )  <-> 
( P  ||  (
( C  x.  B
)  +  ( A  x.  D ) )  \/  P  ||  (
( C  x.  B
)  -  ( A  x.  D ) ) ) ) )
10499, 103mpbid 147 . 2  |-  ( ph  ->  ( P  ||  (
( C  x.  B
)  +  ( A  x.  D ) )  \/  P  ||  (
( C  x.  B
)  -  ( A  x.  D ) ) ) )
10519, 45, 104mpjaodan 803 1  |-  ( ph  ->  N  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    = wceq 1395    e. wcel 2200   class class class wbr 4083    |-> cmpt 4145   ran crn 4720   ` cfv 5318  (class class class)co 6001   CCcc 7997    + caddc 8002    x. cmul 8004    - cmin 8317   -ucneg 8318   NNcn 9110   2c2 9161   ZZcz 9446   ^cexp 10760   abscabs 11508    || cdvds 12298   Primecprime 12629   ZZ[_i]cgz 12892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-1o 6562  df-2o 6563  df-er 6680  df-en 6888  df-sup 7151  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-fz 10205  df-fzo 10339  df-fl 10490  df-mod 10545  df-seqfrec 10670  df-exp 10761  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-dvds 12299  df-gcd 12475  df-prm 12630  df-gz 12893
This theorem is referenced by:  2sqlem5  15798
  Copyright terms: Public domain W3C validator