ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2sqlem4 Unicode version

Theorem 2sqlem4 13554
Description: Lemma for 2sqlem5 13555. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
2sq.1  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
2sqlem5.1  |-  ( ph  ->  N  e.  NN )
2sqlem5.2  |-  ( ph  ->  P  e.  Prime )
2sqlem4.3  |-  ( ph  ->  A  e.  ZZ )
2sqlem4.4  |-  ( ph  ->  B  e.  ZZ )
2sqlem4.5  |-  ( ph  ->  C  e.  ZZ )
2sqlem4.6  |-  ( ph  ->  D  e.  ZZ )
2sqlem4.7  |-  ( ph  ->  ( N  x.  P
)  =  ( ( A ^ 2 )  +  ( B ^
2 ) ) )
2sqlem4.8  |-  ( ph  ->  P  =  ( ( C ^ 2 )  +  ( D ^
2 ) ) )
Assertion
Ref Expression
2sqlem4  |-  ( ph  ->  N  e.  S )

Proof of Theorem 2sqlem4
StepHypRef Expression
1 2sq.1 . . 3  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
2 2sqlem5.1 . . . 4  |-  ( ph  ->  N  e.  NN )
32adantr 274 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  +  ( A  x.  D ) ) )  ->  N  e.  NN )
4 2sqlem5.2 . . . 4  |-  ( ph  ->  P  e.  Prime )
54adantr 274 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  +  ( A  x.  D ) ) )  ->  P  e.  Prime )
6 2sqlem4.3 . . . 4  |-  ( ph  ->  A  e.  ZZ )
76adantr 274 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  +  ( A  x.  D ) ) )  ->  A  e.  ZZ )
8 2sqlem4.4 . . . 4  |-  ( ph  ->  B  e.  ZZ )
98adantr 274 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  +  ( A  x.  D ) ) )  ->  B  e.  ZZ )
10 2sqlem4.5 . . . 4  |-  ( ph  ->  C  e.  ZZ )
1110adantr 274 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  +  ( A  x.  D ) ) )  ->  C  e.  ZZ )
12 2sqlem4.6 . . . 4  |-  ( ph  ->  D  e.  ZZ )
1312adantr 274 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  +  ( A  x.  D ) ) )  ->  D  e.  ZZ )
14 2sqlem4.7 . . . 4  |-  ( ph  ->  ( N  x.  P
)  =  ( ( A ^ 2 )  +  ( B ^
2 ) ) )
1514adantr 274 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  +  ( A  x.  D ) ) )  ->  ( N  x.  P )  =  ( ( A ^ 2 )  +  ( B ^ 2 ) ) )
16 2sqlem4.8 . . . 4  |-  ( ph  ->  P  =  ( ( C ^ 2 )  +  ( D ^
2 ) ) )
1716adantr 274 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  +  ( A  x.  D ) ) )  ->  P  =  ( ( C ^
2 )  +  ( D ^ 2 ) ) )
18 simpr 109 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  +  ( A  x.  D ) ) )  ->  P  ||  (
( C  x.  B
)  +  ( A  x.  D ) ) )
191, 3, 5, 7, 9, 11, 13, 15, 17, 182sqlem3 13553 . 2  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  +  ( A  x.  D ) ) )  ->  N  e.  S )
202adantr 274 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  -  ( A  x.  D ) ) )  ->  N  e.  NN )
214adantr 274 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  -  ( A  x.  D ) ) )  ->  P  e.  Prime )
226znegcld 9311 . . . 4  |-  ( ph  -> 
-u A  e.  ZZ )
2322adantr 274 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  -  ( A  x.  D ) ) )  ->  -u A  e.  ZZ )
248adantr 274 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  -  ( A  x.  D ) ) )  ->  B  e.  ZZ )
2510adantr 274 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  -  ( A  x.  D ) ) )  ->  C  e.  ZZ )
2612adantr 274 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  -  ( A  x.  D ) ) )  ->  D  e.  ZZ )
276zcnd 9310 . . . . . . 7  |-  ( ph  ->  A  e.  CC )
28 sqneg 10510 . . . . . . 7  |-  ( A  e.  CC  ->  ( -u A ^ 2 )  =  ( A ^
2 ) )
2927, 28syl 14 . . . . . 6  |-  ( ph  ->  ( -u A ^
2 )  =  ( A ^ 2 ) )
3029oveq1d 5856 . . . . 5  |-  ( ph  ->  ( ( -u A ^ 2 )  +  ( B ^ 2 ) )  =  ( ( A ^ 2 )  +  ( B ^ 2 ) ) )
3114, 30eqtr4d 2201 . . . 4  |-  ( ph  ->  ( N  x.  P
)  =  ( (
-u A ^ 2 )  +  ( B ^ 2 ) ) )
3231adantr 274 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  -  ( A  x.  D ) ) )  ->  ( N  x.  P )  =  ( ( -u A ^
2 )  +  ( B ^ 2 ) ) )
3316adantr 274 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  -  ( A  x.  D ) ) )  ->  P  =  ( ( C ^
2 )  +  ( D ^ 2 ) ) )
3412zcnd 9310 . . . . . . . 8  |-  ( ph  ->  D  e.  CC )
3527, 34mulneg1d 8305 . . . . . . 7  |-  ( ph  ->  ( -u A  x.  D )  =  -u ( A  x.  D
) )
3635oveq2d 5857 . . . . . 6  |-  ( ph  ->  ( ( C  x.  B )  +  (
-u A  x.  D
) )  =  ( ( C  x.  B
)  +  -u ( A  x.  D )
) )
3710, 8zmulcld 9315 . . . . . . . 8  |-  ( ph  ->  ( C  x.  B
)  e.  ZZ )
3837zcnd 9310 . . . . . . 7  |-  ( ph  ->  ( C  x.  B
)  e.  CC )
396, 12zmulcld 9315 . . . . . . . 8  |-  ( ph  ->  ( A  x.  D
)  e.  ZZ )
4039zcnd 9310 . . . . . . 7  |-  ( ph  ->  ( A  x.  D
)  e.  CC )
4138, 40negsubd 8211 . . . . . 6  |-  ( ph  ->  ( ( C  x.  B )  +  -u ( A  x.  D
) )  =  ( ( C  x.  B
)  -  ( A  x.  D ) ) )
4236, 41eqtrd 2198 . . . . 5  |-  ( ph  ->  ( ( C  x.  B )  +  (
-u A  x.  D
) )  =  ( ( C  x.  B
)  -  ( A  x.  D ) ) )
4342breq2d 3993 . . . 4  |-  ( ph  ->  ( P  ||  (
( C  x.  B
)  +  ( -u A  x.  D )
)  <->  P  ||  ( ( C  x.  B )  -  ( A  x.  D ) ) ) )
4443biimpar 295 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  -  ( A  x.  D ) ) )  ->  P  ||  (
( C  x.  B
)  +  ( -u A  x.  D )
) )
451, 20, 21, 23, 24, 25, 26, 32, 33, 442sqlem3 13553 . 2  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  -  ( A  x.  D ) ) )  ->  N  e.  S )
46 prmz 12039 . . . . . 6  |-  ( P  e.  Prime  ->  P  e.  ZZ )
474, 46syl 14 . . . . 5  |-  ( ph  ->  P  e.  ZZ )
48 zsqcl 10521 . . . . . . . 8  |-  ( C  e.  ZZ  ->  ( C ^ 2 )  e.  ZZ )
4910, 48syl 14 . . . . . . 7  |-  ( ph  ->  ( C ^ 2 )  e.  ZZ )
502nnzd 9308 . . . . . . 7  |-  ( ph  ->  N  e.  ZZ )
5149, 50zmulcld 9315 . . . . . 6  |-  ( ph  ->  ( ( C ^
2 )  x.  N
)  e.  ZZ )
52 zsqcl 10521 . . . . . . 7  |-  ( A  e.  ZZ  ->  ( A ^ 2 )  e.  ZZ )
536, 52syl 14 . . . . . 6  |-  ( ph  ->  ( A ^ 2 )  e.  ZZ )
5451, 53zsubcld 9314 . . . . 5  |-  ( ph  ->  ( ( ( C ^ 2 )  x.  N )  -  ( A ^ 2 ) )  e.  ZZ )
55 dvdsmul1 11749 . . . . 5  |-  ( ( P  e.  ZZ  /\  ( ( ( C ^ 2 )  x.  N )  -  ( A ^ 2 ) )  e.  ZZ )  ->  P  ||  ( P  x.  ( ( ( C ^ 2 )  x.  N )  -  ( A ^ 2 ) ) ) )
5647, 54, 55syl2anc 409 . . . 4  |-  ( ph  ->  P  ||  ( P  x.  ( ( ( C ^ 2 )  x.  N )  -  ( A ^ 2 ) ) ) )
5710, 6zmulcld 9315 . . . . . . . . 9  |-  ( ph  ->  ( C  x.  A
)  e.  ZZ )
5857zcnd 9310 . . . . . . . 8  |-  ( ph  ->  ( C  x.  A
)  e.  CC )
5958sqcld 10582 . . . . . . 7  |-  ( ph  ->  ( ( C  x.  A ) ^ 2 )  e.  CC )
6038sqcld 10582 . . . . . . 7  |-  ( ph  ->  ( ( C  x.  B ) ^ 2 )  e.  CC )
6140sqcld 10582 . . . . . . 7  |-  ( ph  ->  ( ( A  x.  D ) ^ 2 )  e.  CC )
6259, 60, 61pnpcand 8242 . . . . . 6  |-  ( ph  ->  ( ( ( ( C  x.  A ) ^ 2 )  +  ( ( C  x.  B ) ^ 2 ) )  -  (
( ( C  x.  A ) ^ 2 )  +  ( ( A  x.  D ) ^ 2 ) ) )  =  ( ( ( C  x.  B
) ^ 2 )  -  ( ( A  x.  D ) ^
2 ) ) )
6310zcnd 9310 . . . . . . . . . . . 12  |-  ( ph  ->  C  e.  CC )
6463, 27sqmuld 10596 . . . . . . . . . . 11  |-  ( ph  ->  ( ( C  x.  A ) ^ 2 )  =  ( ( C ^ 2 )  x.  ( A ^
2 ) ) )
658zcnd 9310 . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  CC )
6663, 65sqmuld 10596 . . . . . . . . . . 11  |-  ( ph  ->  ( ( C  x.  B ) ^ 2 )  =  ( ( C ^ 2 )  x.  ( B ^
2 ) ) )
6764, 66oveq12d 5859 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( C  x.  A ) ^
2 )  +  ( ( C  x.  B
) ^ 2 ) )  =  ( ( ( C ^ 2 )  x.  ( A ^ 2 ) )  +  ( ( C ^ 2 )  x.  ( B ^ 2 ) ) ) )
6863sqcld 10582 . . . . . . . . . . 11  |-  ( ph  ->  ( C ^ 2 )  e.  CC )
6953zcnd 9310 . . . . . . . . . . 11  |-  ( ph  ->  ( A ^ 2 )  e.  CC )
7065sqcld 10582 . . . . . . . . . . 11  |-  ( ph  ->  ( B ^ 2 )  e.  CC )
7168, 69, 70adddid 7919 . . . . . . . . . 10  |-  ( ph  ->  ( ( C ^
2 )  x.  (
( A ^ 2 )  +  ( B ^ 2 ) ) )  =  ( ( ( C ^ 2 )  x.  ( A ^ 2 ) )  +  ( ( C ^ 2 )  x.  ( B ^ 2 ) ) ) )
7267, 71eqtr4d 2201 . . . . . . . . 9  |-  ( ph  ->  ( ( ( C  x.  A ) ^
2 )  +  ( ( C  x.  B
) ^ 2 ) )  =  ( ( C ^ 2 )  x.  ( ( A ^ 2 )  +  ( B ^ 2 ) ) ) )
732nncnd 8867 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  CC )
7447zcnd 9310 . . . . . . . . . . . . 13  |-  ( ph  ->  P  e.  CC )
7573, 74mulcomd 7916 . . . . . . . . . . . 12  |-  ( ph  ->  ( N  x.  P
)  =  ( P  x.  N ) )
7614, 75eqtr3d 2200 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( P  x.  N ) )
7776oveq2d 5857 . . . . . . . . . 10  |-  ( ph  ->  ( ( C ^
2 )  x.  (
( A ^ 2 )  +  ( B ^ 2 ) ) )  =  ( ( C ^ 2 )  x.  ( P  x.  N ) ) )
7868, 74, 73mul12d 8046 . . . . . . . . . 10  |-  ( ph  ->  ( ( C ^
2 )  x.  ( P  x.  N )
)  =  ( P  x.  ( ( C ^ 2 )  x.  N ) ) )
7977, 78eqtrd 2198 . . . . . . . . 9  |-  ( ph  ->  ( ( C ^
2 )  x.  (
( A ^ 2 )  +  ( B ^ 2 ) ) )  =  ( P  x.  ( ( C ^ 2 )  x.  N ) ) )
8072, 79eqtrd 2198 . . . . . . . 8  |-  ( ph  ->  ( ( ( C  x.  A ) ^
2 )  +  ( ( C  x.  B
) ^ 2 ) )  =  ( P  x.  ( ( C ^ 2 )  x.  N ) ) )
8127, 34sqmuld 10596 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( A  x.  D ) ^ 2 )  =  ( ( A ^ 2 )  x.  ( D ^
2 ) ) )
8234sqcld 10582 . . . . . . . . . . . . 13  |-  ( ph  ->  ( D ^ 2 )  e.  CC )
8369, 82mulcomd 7916 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( A ^
2 )  x.  ( D ^ 2 ) )  =  ( ( D ^ 2 )  x.  ( A ^ 2 ) ) )
8481, 83eqtrd 2198 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A  x.  D ) ^ 2 )  =  ( ( D ^ 2 )  x.  ( A ^
2 ) ) )
8564, 84oveq12d 5859 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( C  x.  A ) ^
2 )  +  ( ( A  x.  D
) ^ 2 ) )  =  ( ( ( C ^ 2 )  x.  ( A ^ 2 ) )  +  ( ( D ^ 2 )  x.  ( A ^ 2 ) ) ) )
8649zcnd 9310 . . . . . . . . . . 11  |-  ( ph  ->  ( C ^ 2 )  e.  CC )
8786, 82, 69adddird 7920 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( C ^ 2 )  +  ( D ^ 2 ) )  x.  ( A ^ 2 ) )  =  ( ( ( C ^ 2 )  x.  ( A ^
2 ) )  +  ( ( D ^
2 )  x.  ( A ^ 2 ) ) ) )
8885, 87eqtr4d 2201 . . . . . . . . 9  |-  ( ph  ->  ( ( ( C  x.  A ) ^
2 )  +  ( ( A  x.  D
) ^ 2 ) )  =  ( ( ( C ^ 2 )  +  ( D ^ 2 ) )  x.  ( A ^
2 ) ) )
8916oveq1d 5856 . . . . . . . . 9  |-  ( ph  ->  ( P  x.  ( A ^ 2 ) )  =  ( ( ( C ^ 2 )  +  ( D ^
2 ) )  x.  ( A ^ 2 ) ) )
9088, 89eqtr4d 2201 . . . . . . . 8  |-  ( ph  ->  ( ( ( C  x.  A ) ^
2 )  +  ( ( A  x.  D
) ^ 2 ) )  =  ( P  x.  ( A ^
2 ) ) )
9180, 90oveq12d 5859 . . . . . . 7  |-  ( ph  ->  ( ( ( ( C  x.  A ) ^ 2 )  +  ( ( C  x.  B ) ^ 2 ) )  -  (
( ( C  x.  A ) ^ 2 )  +  ( ( A  x.  D ) ^ 2 ) ) )  =  ( ( P  x.  ( ( C ^ 2 )  x.  N ) )  -  ( P  x.  ( A ^ 2 ) ) ) )
9251zcnd 9310 . . . . . . . 8  |-  ( ph  ->  ( ( C ^
2 )  x.  N
)  e.  CC )
9374, 92, 69subdid 8308 . . . . . . 7  |-  ( ph  ->  ( P  x.  (
( ( C ^
2 )  x.  N
)  -  ( A ^ 2 ) ) )  =  ( ( P  x.  ( ( C ^ 2 )  x.  N ) )  -  ( P  x.  ( A ^ 2 ) ) ) )
9491, 93eqtr4d 2201 . . . . . 6  |-  ( ph  ->  ( ( ( ( C  x.  A ) ^ 2 )  +  ( ( C  x.  B ) ^ 2 ) )  -  (
( ( C  x.  A ) ^ 2 )  +  ( ( A  x.  D ) ^ 2 ) ) )  =  ( P  x.  ( ( ( C ^ 2 )  x.  N )  -  ( A ^ 2 ) ) ) )
9562, 94eqtr3d 2200 . . . . 5  |-  ( ph  ->  ( ( ( C  x.  B ) ^
2 )  -  (
( A  x.  D
) ^ 2 ) )  =  ( P  x.  ( ( ( C ^ 2 )  x.  N )  -  ( A ^ 2 ) ) ) )
96 subsq 10557 . . . . . 6  |-  ( ( ( C  x.  B
)  e.  CC  /\  ( A  x.  D
)  e.  CC )  ->  ( ( ( C  x.  B ) ^ 2 )  -  ( ( A  x.  D ) ^ 2 ) )  =  ( ( ( C  x.  B )  +  ( A  x.  D ) )  x.  ( ( C  x.  B )  -  ( A  x.  D ) ) ) )
9738, 40, 96syl2anc 409 . . . . 5  |-  ( ph  ->  ( ( ( C  x.  B ) ^
2 )  -  (
( A  x.  D
) ^ 2 ) )  =  ( ( ( C  x.  B
)  +  ( A  x.  D ) )  x.  ( ( C  x.  B )  -  ( A  x.  D
) ) ) )
9895, 97eqtr3d 2200 . . . 4  |-  ( ph  ->  ( P  x.  (
( ( C ^
2 )  x.  N
)  -  ( A ^ 2 ) ) )  =  ( ( ( C  x.  B
)  +  ( A  x.  D ) )  x.  ( ( C  x.  B )  -  ( A  x.  D
) ) ) )
9956, 98breqtrd 4007 . . 3  |-  ( ph  ->  P  ||  ( ( ( C  x.  B
)  +  ( A  x.  D ) )  x.  ( ( C  x.  B )  -  ( A  x.  D
) ) ) )
10037, 39zaddcld 9313 . . . 4  |-  ( ph  ->  ( ( C  x.  B )  +  ( A  x.  D ) )  e.  ZZ )
10137, 39zsubcld 9314 . . . 4  |-  ( ph  ->  ( ( C  x.  B )  -  ( A  x.  D )
)  e.  ZZ )
102 euclemma 12074 . . . 4  |-  ( ( P  e.  Prime  /\  (
( C  x.  B
)  +  ( A  x.  D ) )  e.  ZZ  /\  (
( C  x.  B
)  -  ( A  x.  D ) )  e.  ZZ )  -> 
( P  ||  (
( ( C  x.  B )  +  ( A  x.  D ) )  x.  ( ( C  x.  B )  -  ( A  x.  D ) ) )  <-> 
( P  ||  (
( C  x.  B
)  +  ( A  x.  D ) )  \/  P  ||  (
( C  x.  B
)  -  ( A  x.  D ) ) ) ) )
1034, 100, 101, 102syl3anc 1228 . . 3  |-  ( ph  ->  ( P  ||  (
( ( C  x.  B )  +  ( A  x.  D ) )  x.  ( ( C  x.  B )  -  ( A  x.  D ) ) )  <-> 
( P  ||  (
( C  x.  B
)  +  ( A  x.  D ) )  \/  P  ||  (
( C  x.  B
)  -  ( A  x.  D ) ) ) ) )
10499, 103mpbid 146 . 2  |-  ( ph  ->  ( P  ||  (
( C  x.  B
)  +  ( A  x.  D ) )  \/  P  ||  (
( C  x.  B
)  -  ( A  x.  D ) ) ) )
10519, 45, 104mpjaodan 788 1  |-  ( ph  ->  N  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    = wceq 1343    e. wcel 2136   class class class wbr 3981    |-> cmpt 4042   ran crn 4604   ` cfv 5187  (class class class)co 5841   CCcc 7747    + caddc 7752    x. cmul 7754    - cmin 8065   -ucneg 8066   NNcn 8853   2c2 8904   ZZcz 9187   ^cexp 10450   abscabs 10935    || cdvds 11723   Primecprime 12035   ZZ[_i]cgz 12295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4096  ax-sep 4099  ax-nul 4107  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-iinf 4564  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-mulrcl 7848  ax-addcom 7849  ax-mulcom 7850  ax-addass 7851  ax-mulass 7852  ax-distr 7853  ax-i2m1 7854  ax-0lt1 7855  ax-1rid 7856  ax-0id 7857  ax-rnegex 7858  ax-precex 7859  ax-cnre 7860  ax-pre-ltirr 7861  ax-pre-ltwlin 7862  ax-pre-lttrn 7863  ax-pre-apti 7864  ax-pre-ltadd 7865  ax-pre-mulgt0 7866  ax-pre-mulext 7867  ax-arch 7868  ax-caucvg 7869
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rmo 2451  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-nul 3409  df-if 3520  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-tr 4080  df-id 4270  df-po 4273  df-iso 4274  df-iord 4343  df-on 4345  df-ilim 4346  df-suc 4348  df-iom 4567  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194  df-fv 5195  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-1st 6105  df-2nd 6106  df-recs 6269  df-frec 6355  df-1o 6380  df-2o 6381  df-er 6497  df-en 6703  df-sup 6945  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-sub 8067  df-neg 8068  df-reap 8469  df-ap 8476  df-div 8565  df-inn 8854  df-2 8912  df-3 8913  df-4 8914  df-n0 9111  df-z 9188  df-uz 9463  df-q 9554  df-rp 9586  df-fz 9941  df-fzo 10074  df-fl 10201  df-mod 10254  df-seqfrec 10377  df-exp 10451  df-cj 10780  df-re 10781  df-im 10782  df-rsqrt 10936  df-abs 10937  df-dvds 11724  df-gcd 11872  df-prm 12036  df-gz 12296
This theorem is referenced by:  2sqlem5  13555
  Copyright terms: Public domain W3C validator