ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqmul1 Unicode version

Theorem modqmul1 10472
Description: Multiplication property of the modulo operation. Note that the multiplier  C must be an integer. (Contributed by Jim Kingdon, 24-Oct-2021.)
Hypotheses
Ref Expression
modqmul1.a  |-  ( ph  ->  A  e.  QQ )
modqmul1.b  |-  ( ph  ->  B  e.  QQ )
modqmul1.c  |-  ( ph  ->  C  e.  ZZ )
modqmul1.d  |-  ( ph  ->  D  e.  QQ )
modqmul1.dgt0  |-  ( ph  ->  0  <  D )
modqmul1.ab  |-  ( ph  ->  ( A  mod  D
)  =  ( B  mod  D ) )
Assertion
Ref Expression
modqmul1  |-  ( ph  ->  ( ( A  x.  C )  mod  D
)  =  ( ( B  x.  C )  mod  D ) )

Proof of Theorem modqmul1
StepHypRef Expression
1 modqmul1.ab . 2  |-  ( ph  ->  ( A  mod  D
)  =  ( B  mod  D ) )
2 modqmul1.a . . . . . . 7  |-  ( ph  ->  A  e.  QQ )
3 modqmul1.d . . . . . . 7  |-  ( ph  ->  D  e.  QQ )
4 modqmul1.dgt0 . . . . . . 7  |-  ( ph  ->  0  <  D )
5 modqval 10419 . . . . . . 7  |-  ( ( A  e.  QQ  /\  D  e.  QQ  /\  0  <  D )  ->  ( A  mod  D )  =  ( A  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) ) )
62, 3, 4, 5syl3anc 1249 . . . . . 6  |-  ( ph  ->  ( A  mod  D
)  =  ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) ) )
7 modqmul1.b . . . . . . 7  |-  ( ph  ->  B  e.  QQ )
8 modqval 10419 . . . . . . 7  |-  ( ( B  e.  QQ  /\  D  e.  QQ  /\  0  <  D )  ->  ( B  mod  D )  =  ( B  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) ) )
97, 3, 4, 8syl3anc 1249 . . . . . 6  |-  ( ph  ->  ( B  mod  D
)  =  ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) ) )
106, 9eqeq12d 2211 . . . . 5  |-  ( ph  ->  ( ( A  mod  D )  =  ( B  mod  D )  <->  ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  =  ( B  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) ) ) )
11 oveq1 5930 . . . . 5  |-  ( ( A  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) )  =  ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  ->  ( ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  x.  C
)  =  ( ( B  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) )  x.  C ) )
1210, 11biimtrdi 163 . . . 4  |-  ( ph  ->  ( ( A  mod  D )  =  ( B  mod  D )  -> 
( ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  x.  C )  =  ( ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  x.  C
) ) )
13 qcn 9711 . . . . . . . . . 10  |-  ( D  e.  QQ  ->  D  e.  CC )
143, 13syl 14 . . . . . . . . 9  |-  ( ph  ->  D  e.  CC )
15 modqmul1.c . . . . . . . . . 10  |-  ( ph  ->  C  e.  ZZ )
1615zcnd 9452 . . . . . . . . 9  |-  ( ph  ->  C  e.  CC )
174gt0ne0d 8542 . . . . . . . . . . . 12  |-  ( ph  ->  D  =/=  0 )
18 qdivcl 9720 . . . . . . . . . . . 12  |-  ( ( A  e.  QQ  /\  D  e.  QQ  /\  D  =/=  0 )  ->  ( A  /  D )  e.  QQ )
192, 3, 17, 18syl3anc 1249 . . . . . . . . . . 11  |-  ( ph  ->  ( A  /  D
)  e.  QQ )
2019flqcld 10370 . . . . . . . . . 10  |-  ( ph  ->  ( |_ `  ( A  /  D ) )  e.  ZZ )
2120zcnd 9452 . . . . . . . . 9  |-  ( ph  ->  ( |_ `  ( A  /  D ) )  e.  CC )
2214, 16, 21mulassd 8053 . . . . . . . 8  |-  ( ph  ->  ( ( D  x.  C )  x.  ( |_ `  ( A  /  D ) ) )  =  ( D  x.  ( C  x.  ( |_ `  ( A  /  D ) ) ) ) )
2314, 16, 21mul32d 8182 . . . . . . . 8  |-  ( ph  ->  ( ( D  x.  C )  x.  ( |_ `  ( A  /  D ) ) )  =  ( ( D  x.  ( |_ `  ( A  /  D
) ) )  x.  C ) )
2422, 23eqtr3d 2231 . . . . . . 7  |-  ( ph  ->  ( D  x.  ( C  x.  ( |_ `  ( A  /  D
) ) ) )  =  ( ( D  x.  ( |_ `  ( A  /  D
) ) )  x.  C ) )
2524oveq2d 5939 . . . . . 6  |-  ( ph  ->  ( ( A  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D ) ) ) ) )  =  ( ( A  x.  C )  -  (
( D  x.  ( |_ `  ( A  /  D ) ) )  x.  C ) ) )
26 qcn 9711 . . . . . . . 8  |-  ( A  e.  QQ  ->  A  e.  CC )
272, 26syl 14 . . . . . . 7  |-  ( ph  ->  A  e.  CC )
2814, 21mulcld 8050 . . . . . . 7  |-  ( ph  ->  ( D  x.  ( |_ `  ( A  /  D ) ) )  e.  CC )
2927, 28, 16subdird 8444 . . . . . 6  |-  ( ph  ->  ( ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  x.  C )  =  ( ( A  x.  C )  -  ( ( D  x.  ( |_ `  ( A  /  D ) ) )  x.  C ) ) )
3025, 29eqtr4d 2232 . . . . 5  |-  ( ph  ->  ( ( A  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D ) ) ) ) )  =  ( ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  x.  C ) )
31 qdivcl 9720 . . . . . . . . . . . 12  |-  ( ( B  e.  QQ  /\  D  e.  QQ  /\  D  =/=  0 )  ->  ( B  /  D )  e.  QQ )
327, 3, 17, 31syl3anc 1249 . . . . . . . . . . 11  |-  ( ph  ->  ( B  /  D
)  e.  QQ )
3332flqcld 10370 . . . . . . . . . 10  |-  ( ph  ->  ( |_ `  ( B  /  D ) )  e.  ZZ )
3433zcnd 9452 . . . . . . . . 9  |-  ( ph  ->  ( |_ `  ( B  /  D ) )  e.  CC )
3514, 16, 34mulassd 8053 . . . . . . . 8  |-  ( ph  ->  ( ( D  x.  C )  x.  ( |_ `  ( B  /  D ) ) )  =  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) )
3614, 16, 34mul32d 8182 . . . . . . . 8  |-  ( ph  ->  ( ( D  x.  C )  x.  ( |_ `  ( B  /  D ) ) )  =  ( ( D  x.  ( |_ `  ( B  /  D
) ) )  x.  C ) )
3735, 36eqtr3d 2231 . . . . . . 7  |-  ( ph  ->  ( D  x.  ( C  x.  ( |_ `  ( B  /  D
) ) ) )  =  ( ( D  x.  ( |_ `  ( B  /  D
) ) )  x.  C ) )
3837oveq2d 5939 . . . . . 6  |-  ( ph  ->  ( ( B  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) )  =  ( ( B  x.  C )  -  (
( D  x.  ( |_ `  ( B  /  D ) ) )  x.  C ) ) )
39 qcn 9711 . . . . . . . 8  |-  ( B  e.  QQ  ->  B  e.  CC )
407, 39syl 14 . . . . . . 7  |-  ( ph  ->  B  e.  CC )
4114, 34mulcld 8050 . . . . . . 7  |-  ( ph  ->  ( D  x.  ( |_ `  ( B  /  D ) ) )  e.  CC )
4240, 41, 16subdird 8444 . . . . . 6  |-  ( ph  ->  ( ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  x.  C )  =  ( ( B  x.  C )  -  ( ( D  x.  ( |_ `  ( B  /  D ) ) )  x.  C ) ) )
4338, 42eqtr4d 2232 . . . . 5  |-  ( ph  ->  ( ( B  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) )  =  ( ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  x.  C ) )
4430, 43eqeq12d 2211 . . . 4  |-  ( ph  ->  ( ( ( A  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D
) ) ) ) )  =  ( ( B  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) )  <->  ( ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  x.  C
)  =  ( ( B  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) )  x.  C ) ) )
4512, 44sylibrd 169 . . 3  |-  ( ph  ->  ( ( A  mod  D )  =  ( B  mod  D )  -> 
( ( A  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D ) ) ) ) )  =  ( ( B  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) ) ) )
46 oveq1 5930 . . . 4  |-  ( ( ( A  x.  C
)  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D ) ) ) ) )  =  ( ( B  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) )  -> 
( ( ( A  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D
) ) ) ) )  mod  D )  =  ( ( ( B  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) )  mod  D
) )
47 zq 9703 . . . . . . . 8  |-  ( C  e.  ZZ  ->  C  e.  QQ )
4815, 47syl 14 . . . . . . 7  |-  ( ph  ->  C  e.  QQ )
49 qmulcl 9714 . . . . . . 7  |-  ( ( A  e.  QQ  /\  C  e.  QQ )  ->  ( A  x.  C
)  e.  QQ )
502, 48, 49syl2anc 411 . . . . . 6  |-  ( ph  ->  ( A  x.  C
)  e.  QQ )
5115, 20zmulcld 9457 . . . . . 6  |-  ( ph  ->  ( C  x.  ( |_ `  ( A  /  D ) ) )  e.  ZZ )
52 modqcyc2 10455 . . . . . 6  |-  ( ( ( ( A  x.  C )  e.  QQ  /\  ( C  x.  ( |_ `  ( A  /  D ) ) )  e.  ZZ )  /\  ( D  e.  QQ  /\  0  <  D ) )  ->  ( (
( A  x.  C
)  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D ) ) ) ) )  mod 
D )  =  ( ( A  x.  C
)  mod  D )
)
5350, 51, 3, 4, 52syl22anc 1250 . . . . 5  |-  ( ph  ->  ( ( ( A  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D
) ) ) ) )  mod  D )  =  ( ( A  x.  C )  mod 
D ) )
54 qmulcl 9714 . . . . . . 7  |-  ( ( B  e.  QQ  /\  C  e.  QQ )  ->  ( B  x.  C
)  e.  QQ )
557, 48, 54syl2anc 411 . . . . . 6  |-  ( ph  ->  ( B  x.  C
)  e.  QQ )
5615, 33zmulcld 9457 . . . . . 6  |-  ( ph  ->  ( C  x.  ( |_ `  ( B  /  D ) ) )  e.  ZZ )
57 modqcyc2 10455 . . . . . 6  |-  ( ( ( ( B  x.  C )  e.  QQ  /\  ( C  x.  ( |_ `  ( B  /  D ) ) )  e.  ZZ )  /\  ( D  e.  QQ  /\  0  <  D ) )  ->  ( (
( B  x.  C
)  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) )  mod 
D )  =  ( ( B  x.  C
)  mod  D )
)
5855, 56, 3, 4, 57syl22anc 1250 . . . . 5  |-  ( ph  ->  ( ( ( B  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D
) ) ) ) )  mod  D )  =  ( ( B  x.  C )  mod 
D ) )
5953, 58eqeq12d 2211 . . . 4  |-  ( ph  ->  ( ( ( ( A  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D ) ) ) ) )  mod  D
)  =  ( ( ( B  x.  C
)  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) )  mod 
D )  <->  ( ( A  x.  C )  mod  D )  =  ( ( B  x.  C
)  mod  D )
) )
6046, 59imbitrid 154 . . 3  |-  ( ph  ->  ( ( ( A  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D
) ) ) ) )  =  ( ( B  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) )  ->  (
( A  x.  C
)  mod  D )  =  ( ( B  x.  C )  mod 
D ) ) )
6145, 60syld 45 . 2  |-  ( ph  ->  ( ( A  mod  D )  =  ( B  mod  D )  -> 
( ( A  x.  C )  mod  D
)  =  ( ( B  x.  C )  mod  D ) ) )
621, 61mpd 13 1  |-  ( ph  ->  ( ( A  x.  C )  mod  D
)  =  ( ( B  x.  C )  mod  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167    =/= wne 2367   class class class wbr 4034   ` cfv 5259  (class class class)co 5923   CCcc 7880   0cc0 7882    x. cmul 7887    < clt 8064    - cmin 8200    / cdiv 8702   ZZcz 9329   QQcq 9696   |_cfl 10361    mod cmo 10417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7973  ax-resscn 7974  ax-1cn 7975  ax-1re 7976  ax-icn 7977  ax-addcl 7978  ax-addrcl 7979  ax-mulcl 7980  ax-mulrcl 7981  ax-addcom 7982  ax-mulcom 7983  ax-addass 7984  ax-mulass 7985  ax-distr 7986  ax-i2m1 7987  ax-0lt1 7988  ax-1rid 7989  ax-0id 7990  ax-rnegex 7991  ax-precex 7992  ax-cnre 7993  ax-pre-ltirr 7994  ax-pre-ltwlin 7995  ax-pre-lttrn 7996  ax-pre-apti 7997  ax-pre-ltadd 7998  ax-pre-mulgt0 7999  ax-pre-mulext 8000  ax-arch 8001
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6200  df-2nd 6201  df-pnf 8066  df-mnf 8067  df-xr 8068  df-ltxr 8069  df-le 8070  df-sub 8202  df-neg 8203  df-reap 8605  df-ap 8612  df-div 8703  df-inn 8994  df-n0 9253  df-z 9330  df-q 9697  df-rp 9732  df-fl 10363  df-mod 10418
This theorem is referenced by:  modqmul12d  10473  modqnegd  10474  modqmulmod  10484  eulerthlema  12409  fermltl  12413  odzdvds  12425  lgsdir2lem4  15298  lgsdirprm  15301  gausslemma2d  15336
  Copyright terms: Public domain W3C validator