ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqmul1 Unicode version

Theorem modqmul1 10554
Description: Multiplication property of the modulo operation. Note that the multiplier  C must be an integer. (Contributed by Jim Kingdon, 24-Oct-2021.)
Hypotheses
Ref Expression
modqmul1.a  |-  ( ph  ->  A  e.  QQ )
modqmul1.b  |-  ( ph  ->  B  e.  QQ )
modqmul1.c  |-  ( ph  ->  C  e.  ZZ )
modqmul1.d  |-  ( ph  ->  D  e.  QQ )
modqmul1.dgt0  |-  ( ph  ->  0  <  D )
modqmul1.ab  |-  ( ph  ->  ( A  mod  D
)  =  ( B  mod  D ) )
Assertion
Ref Expression
modqmul1  |-  ( ph  ->  ( ( A  x.  C )  mod  D
)  =  ( ( B  x.  C )  mod  D ) )

Proof of Theorem modqmul1
StepHypRef Expression
1 modqmul1.ab . 2  |-  ( ph  ->  ( A  mod  D
)  =  ( B  mod  D ) )
2 modqmul1.a . . . . . . 7  |-  ( ph  ->  A  e.  QQ )
3 modqmul1.d . . . . . . 7  |-  ( ph  ->  D  e.  QQ )
4 modqmul1.dgt0 . . . . . . 7  |-  ( ph  ->  0  <  D )
5 modqval 10501 . . . . . . 7  |-  ( ( A  e.  QQ  /\  D  e.  QQ  /\  0  <  D )  ->  ( A  mod  D )  =  ( A  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) ) )
62, 3, 4, 5syl3anc 1250 . . . . . 6  |-  ( ph  ->  ( A  mod  D
)  =  ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) ) )
7 modqmul1.b . . . . . . 7  |-  ( ph  ->  B  e.  QQ )
8 modqval 10501 . . . . . . 7  |-  ( ( B  e.  QQ  /\  D  e.  QQ  /\  0  <  D )  ->  ( B  mod  D )  =  ( B  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) ) )
97, 3, 4, 8syl3anc 1250 . . . . . 6  |-  ( ph  ->  ( B  mod  D
)  =  ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) ) )
106, 9eqeq12d 2221 . . . . 5  |-  ( ph  ->  ( ( A  mod  D )  =  ( B  mod  D )  <->  ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  =  ( B  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) ) ) )
11 oveq1 5969 . . . . 5  |-  ( ( A  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) )  =  ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  ->  ( ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  x.  C
)  =  ( ( B  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) )  x.  C ) )
1210, 11biimtrdi 163 . . . 4  |-  ( ph  ->  ( ( A  mod  D )  =  ( B  mod  D )  -> 
( ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  x.  C )  =  ( ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  x.  C
) ) )
13 qcn 9785 . . . . . . . . . 10  |-  ( D  e.  QQ  ->  D  e.  CC )
143, 13syl 14 . . . . . . . . 9  |-  ( ph  ->  D  e.  CC )
15 modqmul1.c . . . . . . . . . 10  |-  ( ph  ->  C  e.  ZZ )
1615zcnd 9526 . . . . . . . . 9  |-  ( ph  ->  C  e.  CC )
174gt0ne0d 8615 . . . . . . . . . . . 12  |-  ( ph  ->  D  =/=  0 )
18 qdivcl 9794 . . . . . . . . . . . 12  |-  ( ( A  e.  QQ  /\  D  e.  QQ  /\  D  =/=  0 )  ->  ( A  /  D )  e.  QQ )
192, 3, 17, 18syl3anc 1250 . . . . . . . . . . 11  |-  ( ph  ->  ( A  /  D
)  e.  QQ )
2019flqcld 10452 . . . . . . . . . 10  |-  ( ph  ->  ( |_ `  ( A  /  D ) )  e.  ZZ )
2120zcnd 9526 . . . . . . . . 9  |-  ( ph  ->  ( |_ `  ( A  /  D ) )  e.  CC )
2214, 16, 21mulassd 8126 . . . . . . . 8  |-  ( ph  ->  ( ( D  x.  C )  x.  ( |_ `  ( A  /  D ) ) )  =  ( D  x.  ( C  x.  ( |_ `  ( A  /  D ) ) ) ) )
2314, 16, 21mul32d 8255 . . . . . . . 8  |-  ( ph  ->  ( ( D  x.  C )  x.  ( |_ `  ( A  /  D ) ) )  =  ( ( D  x.  ( |_ `  ( A  /  D
) ) )  x.  C ) )
2422, 23eqtr3d 2241 . . . . . . 7  |-  ( ph  ->  ( D  x.  ( C  x.  ( |_ `  ( A  /  D
) ) ) )  =  ( ( D  x.  ( |_ `  ( A  /  D
) ) )  x.  C ) )
2524oveq2d 5978 . . . . . 6  |-  ( ph  ->  ( ( A  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D ) ) ) ) )  =  ( ( A  x.  C )  -  (
( D  x.  ( |_ `  ( A  /  D ) ) )  x.  C ) ) )
26 qcn 9785 . . . . . . . 8  |-  ( A  e.  QQ  ->  A  e.  CC )
272, 26syl 14 . . . . . . 7  |-  ( ph  ->  A  e.  CC )
2814, 21mulcld 8123 . . . . . . 7  |-  ( ph  ->  ( D  x.  ( |_ `  ( A  /  D ) ) )  e.  CC )
2927, 28, 16subdird 8517 . . . . . 6  |-  ( ph  ->  ( ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  x.  C )  =  ( ( A  x.  C )  -  ( ( D  x.  ( |_ `  ( A  /  D ) ) )  x.  C ) ) )
3025, 29eqtr4d 2242 . . . . 5  |-  ( ph  ->  ( ( A  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D ) ) ) ) )  =  ( ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  x.  C ) )
31 qdivcl 9794 . . . . . . . . . . . 12  |-  ( ( B  e.  QQ  /\  D  e.  QQ  /\  D  =/=  0 )  ->  ( B  /  D )  e.  QQ )
327, 3, 17, 31syl3anc 1250 . . . . . . . . . . 11  |-  ( ph  ->  ( B  /  D
)  e.  QQ )
3332flqcld 10452 . . . . . . . . . 10  |-  ( ph  ->  ( |_ `  ( B  /  D ) )  e.  ZZ )
3433zcnd 9526 . . . . . . . . 9  |-  ( ph  ->  ( |_ `  ( B  /  D ) )  e.  CC )
3514, 16, 34mulassd 8126 . . . . . . . 8  |-  ( ph  ->  ( ( D  x.  C )  x.  ( |_ `  ( B  /  D ) ) )  =  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) )
3614, 16, 34mul32d 8255 . . . . . . . 8  |-  ( ph  ->  ( ( D  x.  C )  x.  ( |_ `  ( B  /  D ) ) )  =  ( ( D  x.  ( |_ `  ( B  /  D
) ) )  x.  C ) )
3735, 36eqtr3d 2241 . . . . . . 7  |-  ( ph  ->  ( D  x.  ( C  x.  ( |_ `  ( B  /  D
) ) ) )  =  ( ( D  x.  ( |_ `  ( B  /  D
) ) )  x.  C ) )
3837oveq2d 5978 . . . . . 6  |-  ( ph  ->  ( ( B  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) )  =  ( ( B  x.  C )  -  (
( D  x.  ( |_ `  ( B  /  D ) ) )  x.  C ) ) )
39 qcn 9785 . . . . . . . 8  |-  ( B  e.  QQ  ->  B  e.  CC )
407, 39syl 14 . . . . . . 7  |-  ( ph  ->  B  e.  CC )
4114, 34mulcld 8123 . . . . . . 7  |-  ( ph  ->  ( D  x.  ( |_ `  ( B  /  D ) ) )  e.  CC )
4240, 41, 16subdird 8517 . . . . . 6  |-  ( ph  ->  ( ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  x.  C )  =  ( ( B  x.  C )  -  ( ( D  x.  ( |_ `  ( B  /  D ) ) )  x.  C ) ) )
4338, 42eqtr4d 2242 . . . . 5  |-  ( ph  ->  ( ( B  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) )  =  ( ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  x.  C ) )
4430, 43eqeq12d 2221 . . . 4  |-  ( ph  ->  ( ( ( A  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D
) ) ) ) )  =  ( ( B  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) )  <->  ( ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  x.  C
)  =  ( ( B  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) )  x.  C ) ) )
4512, 44sylibrd 169 . . 3  |-  ( ph  ->  ( ( A  mod  D )  =  ( B  mod  D )  -> 
( ( A  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D ) ) ) ) )  =  ( ( B  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) ) ) )
46 oveq1 5969 . . . 4  |-  ( ( ( A  x.  C
)  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D ) ) ) ) )  =  ( ( B  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) )  -> 
( ( ( A  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D
) ) ) ) )  mod  D )  =  ( ( ( B  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) )  mod  D
) )
47 zq 9777 . . . . . . . 8  |-  ( C  e.  ZZ  ->  C  e.  QQ )
4815, 47syl 14 . . . . . . 7  |-  ( ph  ->  C  e.  QQ )
49 qmulcl 9788 . . . . . . 7  |-  ( ( A  e.  QQ  /\  C  e.  QQ )  ->  ( A  x.  C
)  e.  QQ )
502, 48, 49syl2anc 411 . . . . . 6  |-  ( ph  ->  ( A  x.  C
)  e.  QQ )
5115, 20zmulcld 9531 . . . . . 6  |-  ( ph  ->  ( C  x.  ( |_ `  ( A  /  D ) ) )  e.  ZZ )
52 modqcyc2 10537 . . . . . 6  |-  ( ( ( ( A  x.  C )  e.  QQ  /\  ( C  x.  ( |_ `  ( A  /  D ) ) )  e.  ZZ )  /\  ( D  e.  QQ  /\  0  <  D ) )  ->  ( (
( A  x.  C
)  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D ) ) ) ) )  mod 
D )  =  ( ( A  x.  C
)  mod  D )
)
5350, 51, 3, 4, 52syl22anc 1251 . . . . 5  |-  ( ph  ->  ( ( ( A  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D
) ) ) ) )  mod  D )  =  ( ( A  x.  C )  mod 
D ) )
54 qmulcl 9788 . . . . . . 7  |-  ( ( B  e.  QQ  /\  C  e.  QQ )  ->  ( B  x.  C
)  e.  QQ )
557, 48, 54syl2anc 411 . . . . . 6  |-  ( ph  ->  ( B  x.  C
)  e.  QQ )
5615, 33zmulcld 9531 . . . . . 6  |-  ( ph  ->  ( C  x.  ( |_ `  ( B  /  D ) ) )  e.  ZZ )
57 modqcyc2 10537 . . . . . 6  |-  ( ( ( ( B  x.  C )  e.  QQ  /\  ( C  x.  ( |_ `  ( B  /  D ) ) )  e.  ZZ )  /\  ( D  e.  QQ  /\  0  <  D ) )  ->  ( (
( B  x.  C
)  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) )  mod 
D )  =  ( ( B  x.  C
)  mod  D )
)
5855, 56, 3, 4, 57syl22anc 1251 . . . . 5  |-  ( ph  ->  ( ( ( B  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D
) ) ) ) )  mod  D )  =  ( ( B  x.  C )  mod 
D ) )
5953, 58eqeq12d 2221 . . . 4  |-  ( ph  ->  ( ( ( ( A  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D ) ) ) ) )  mod  D
)  =  ( ( ( B  x.  C
)  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) )  mod 
D )  <->  ( ( A  x.  C )  mod  D )  =  ( ( B  x.  C
)  mod  D )
) )
6046, 59imbitrid 154 . . 3  |-  ( ph  ->  ( ( ( A  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D
) ) ) ) )  =  ( ( B  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) )  ->  (
( A  x.  C
)  mod  D )  =  ( ( B  x.  C )  mod 
D ) ) )
6145, 60syld 45 . 2  |-  ( ph  ->  ( ( A  mod  D )  =  ( B  mod  D )  -> 
( ( A  x.  C )  mod  D
)  =  ( ( B  x.  C )  mod  D ) ) )
621, 61mpd 13 1  |-  ( ph  ->  ( ( A  x.  C )  mod  D
)  =  ( ( B  x.  C )  mod  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2177    =/= wne 2377   class class class wbr 4054   ` cfv 5285  (class class class)co 5962   CCcc 7953   0cc0 7955    x. cmul 7960    < clt 8137    - cmin 8273    / cdiv 8775   ZZcz 9402   QQcq 9770   |_cfl 10443    mod cmo 10499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-mulrcl 8054  ax-addcom 8055  ax-mulcom 8056  ax-addass 8057  ax-mulass 8058  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-1rid 8062  ax-0id 8063  ax-rnegex 8064  ax-precex 8065  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-apti 8070  ax-pre-ltadd 8071  ax-pre-mulgt0 8072  ax-pre-mulext 8073  ax-arch 8074
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-po 4356  df-iso 4357  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-reap 8678  df-ap 8685  df-div 8776  df-inn 9067  df-n0 9326  df-z 9403  df-q 9771  df-rp 9806  df-fl 10445  df-mod 10500
This theorem is referenced by:  modqmul12d  10555  modqnegd  10556  modqmulmod  10566  eulerthlema  12637  fermltl  12641  odzdvds  12653  lgsdir2lem4  15593  lgsdirprm  15596  gausslemma2d  15631
  Copyright terms: Public domain W3C validator