ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqmul1 Unicode version

Theorem modqmul1 10451
Description: Multiplication property of the modulo operation. Note that the multiplier  C must be an integer. (Contributed by Jim Kingdon, 24-Oct-2021.)
Hypotheses
Ref Expression
modqmul1.a  |-  ( ph  ->  A  e.  QQ )
modqmul1.b  |-  ( ph  ->  B  e.  QQ )
modqmul1.c  |-  ( ph  ->  C  e.  ZZ )
modqmul1.d  |-  ( ph  ->  D  e.  QQ )
modqmul1.dgt0  |-  ( ph  ->  0  <  D )
modqmul1.ab  |-  ( ph  ->  ( A  mod  D
)  =  ( B  mod  D ) )
Assertion
Ref Expression
modqmul1  |-  ( ph  ->  ( ( A  x.  C )  mod  D
)  =  ( ( B  x.  C )  mod  D ) )

Proof of Theorem modqmul1
StepHypRef Expression
1 modqmul1.ab . 2  |-  ( ph  ->  ( A  mod  D
)  =  ( B  mod  D ) )
2 modqmul1.a . . . . . . 7  |-  ( ph  ->  A  e.  QQ )
3 modqmul1.d . . . . . . 7  |-  ( ph  ->  D  e.  QQ )
4 modqmul1.dgt0 . . . . . . 7  |-  ( ph  ->  0  <  D )
5 modqval 10398 . . . . . . 7  |-  ( ( A  e.  QQ  /\  D  e.  QQ  /\  0  <  D )  ->  ( A  mod  D )  =  ( A  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) ) )
62, 3, 4, 5syl3anc 1249 . . . . . 6  |-  ( ph  ->  ( A  mod  D
)  =  ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) ) )
7 modqmul1.b . . . . . . 7  |-  ( ph  ->  B  e.  QQ )
8 modqval 10398 . . . . . . 7  |-  ( ( B  e.  QQ  /\  D  e.  QQ  /\  0  <  D )  ->  ( B  mod  D )  =  ( B  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) ) )
97, 3, 4, 8syl3anc 1249 . . . . . 6  |-  ( ph  ->  ( B  mod  D
)  =  ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) ) )
106, 9eqeq12d 2208 . . . . 5  |-  ( ph  ->  ( ( A  mod  D )  =  ( B  mod  D )  <->  ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  =  ( B  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) ) ) )
11 oveq1 5926 . . . . 5  |-  ( ( A  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) )  =  ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  ->  ( ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  x.  C
)  =  ( ( B  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) )  x.  C ) )
1210, 11biimtrdi 163 . . . 4  |-  ( ph  ->  ( ( A  mod  D )  =  ( B  mod  D )  -> 
( ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  x.  C )  =  ( ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  x.  C
) ) )
13 qcn 9702 . . . . . . . . . 10  |-  ( D  e.  QQ  ->  D  e.  CC )
143, 13syl 14 . . . . . . . . 9  |-  ( ph  ->  D  e.  CC )
15 modqmul1.c . . . . . . . . . 10  |-  ( ph  ->  C  e.  ZZ )
1615zcnd 9443 . . . . . . . . 9  |-  ( ph  ->  C  e.  CC )
174gt0ne0d 8533 . . . . . . . . . . . 12  |-  ( ph  ->  D  =/=  0 )
18 qdivcl 9711 . . . . . . . . . . . 12  |-  ( ( A  e.  QQ  /\  D  e.  QQ  /\  D  =/=  0 )  ->  ( A  /  D )  e.  QQ )
192, 3, 17, 18syl3anc 1249 . . . . . . . . . . 11  |-  ( ph  ->  ( A  /  D
)  e.  QQ )
2019flqcld 10349 . . . . . . . . . 10  |-  ( ph  ->  ( |_ `  ( A  /  D ) )  e.  ZZ )
2120zcnd 9443 . . . . . . . . 9  |-  ( ph  ->  ( |_ `  ( A  /  D ) )  e.  CC )
2214, 16, 21mulassd 8045 . . . . . . . 8  |-  ( ph  ->  ( ( D  x.  C )  x.  ( |_ `  ( A  /  D ) ) )  =  ( D  x.  ( C  x.  ( |_ `  ( A  /  D ) ) ) ) )
2314, 16, 21mul32d 8174 . . . . . . . 8  |-  ( ph  ->  ( ( D  x.  C )  x.  ( |_ `  ( A  /  D ) ) )  =  ( ( D  x.  ( |_ `  ( A  /  D
) ) )  x.  C ) )
2422, 23eqtr3d 2228 . . . . . . 7  |-  ( ph  ->  ( D  x.  ( C  x.  ( |_ `  ( A  /  D
) ) ) )  =  ( ( D  x.  ( |_ `  ( A  /  D
) ) )  x.  C ) )
2524oveq2d 5935 . . . . . 6  |-  ( ph  ->  ( ( A  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D ) ) ) ) )  =  ( ( A  x.  C )  -  (
( D  x.  ( |_ `  ( A  /  D ) ) )  x.  C ) ) )
26 qcn 9702 . . . . . . . 8  |-  ( A  e.  QQ  ->  A  e.  CC )
272, 26syl 14 . . . . . . 7  |-  ( ph  ->  A  e.  CC )
2814, 21mulcld 8042 . . . . . . 7  |-  ( ph  ->  ( D  x.  ( |_ `  ( A  /  D ) ) )  e.  CC )
2927, 28, 16subdird 8436 . . . . . 6  |-  ( ph  ->  ( ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  x.  C )  =  ( ( A  x.  C )  -  ( ( D  x.  ( |_ `  ( A  /  D ) ) )  x.  C ) ) )
3025, 29eqtr4d 2229 . . . . 5  |-  ( ph  ->  ( ( A  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D ) ) ) ) )  =  ( ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  x.  C ) )
31 qdivcl 9711 . . . . . . . . . . . 12  |-  ( ( B  e.  QQ  /\  D  e.  QQ  /\  D  =/=  0 )  ->  ( B  /  D )  e.  QQ )
327, 3, 17, 31syl3anc 1249 . . . . . . . . . . 11  |-  ( ph  ->  ( B  /  D
)  e.  QQ )
3332flqcld 10349 . . . . . . . . . 10  |-  ( ph  ->  ( |_ `  ( B  /  D ) )  e.  ZZ )
3433zcnd 9443 . . . . . . . . 9  |-  ( ph  ->  ( |_ `  ( B  /  D ) )  e.  CC )
3514, 16, 34mulassd 8045 . . . . . . . 8  |-  ( ph  ->  ( ( D  x.  C )  x.  ( |_ `  ( B  /  D ) ) )  =  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) )
3614, 16, 34mul32d 8174 . . . . . . . 8  |-  ( ph  ->  ( ( D  x.  C )  x.  ( |_ `  ( B  /  D ) ) )  =  ( ( D  x.  ( |_ `  ( B  /  D
) ) )  x.  C ) )
3735, 36eqtr3d 2228 . . . . . . 7  |-  ( ph  ->  ( D  x.  ( C  x.  ( |_ `  ( B  /  D
) ) ) )  =  ( ( D  x.  ( |_ `  ( B  /  D
) ) )  x.  C ) )
3837oveq2d 5935 . . . . . 6  |-  ( ph  ->  ( ( B  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) )  =  ( ( B  x.  C )  -  (
( D  x.  ( |_ `  ( B  /  D ) ) )  x.  C ) ) )
39 qcn 9702 . . . . . . . 8  |-  ( B  e.  QQ  ->  B  e.  CC )
407, 39syl 14 . . . . . . 7  |-  ( ph  ->  B  e.  CC )
4114, 34mulcld 8042 . . . . . . 7  |-  ( ph  ->  ( D  x.  ( |_ `  ( B  /  D ) ) )  e.  CC )
4240, 41, 16subdird 8436 . . . . . 6  |-  ( ph  ->  ( ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  x.  C )  =  ( ( B  x.  C )  -  ( ( D  x.  ( |_ `  ( B  /  D ) ) )  x.  C ) ) )
4338, 42eqtr4d 2229 . . . . 5  |-  ( ph  ->  ( ( B  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) )  =  ( ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  x.  C ) )
4430, 43eqeq12d 2208 . . . 4  |-  ( ph  ->  ( ( ( A  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D
) ) ) ) )  =  ( ( B  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) )  <->  ( ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  x.  C
)  =  ( ( B  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) )  x.  C ) ) )
4512, 44sylibrd 169 . . 3  |-  ( ph  ->  ( ( A  mod  D )  =  ( B  mod  D )  -> 
( ( A  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D ) ) ) ) )  =  ( ( B  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) ) ) )
46 oveq1 5926 . . . 4  |-  ( ( ( A  x.  C
)  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D ) ) ) ) )  =  ( ( B  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) )  -> 
( ( ( A  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D
) ) ) ) )  mod  D )  =  ( ( ( B  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) )  mod  D
) )
47 zq 9694 . . . . . . . 8  |-  ( C  e.  ZZ  ->  C  e.  QQ )
4815, 47syl 14 . . . . . . 7  |-  ( ph  ->  C  e.  QQ )
49 qmulcl 9705 . . . . . . 7  |-  ( ( A  e.  QQ  /\  C  e.  QQ )  ->  ( A  x.  C
)  e.  QQ )
502, 48, 49syl2anc 411 . . . . . 6  |-  ( ph  ->  ( A  x.  C
)  e.  QQ )
5115, 20zmulcld 9448 . . . . . 6  |-  ( ph  ->  ( C  x.  ( |_ `  ( A  /  D ) ) )  e.  ZZ )
52 modqcyc2 10434 . . . . . 6  |-  ( ( ( ( A  x.  C )  e.  QQ  /\  ( C  x.  ( |_ `  ( A  /  D ) ) )  e.  ZZ )  /\  ( D  e.  QQ  /\  0  <  D ) )  ->  ( (
( A  x.  C
)  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D ) ) ) ) )  mod 
D )  =  ( ( A  x.  C
)  mod  D )
)
5350, 51, 3, 4, 52syl22anc 1250 . . . . 5  |-  ( ph  ->  ( ( ( A  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D
) ) ) ) )  mod  D )  =  ( ( A  x.  C )  mod 
D ) )
54 qmulcl 9705 . . . . . . 7  |-  ( ( B  e.  QQ  /\  C  e.  QQ )  ->  ( B  x.  C
)  e.  QQ )
557, 48, 54syl2anc 411 . . . . . 6  |-  ( ph  ->  ( B  x.  C
)  e.  QQ )
5615, 33zmulcld 9448 . . . . . 6  |-  ( ph  ->  ( C  x.  ( |_ `  ( B  /  D ) ) )  e.  ZZ )
57 modqcyc2 10434 . . . . . 6  |-  ( ( ( ( B  x.  C )  e.  QQ  /\  ( C  x.  ( |_ `  ( B  /  D ) ) )  e.  ZZ )  /\  ( D  e.  QQ  /\  0  <  D ) )  ->  ( (
( B  x.  C
)  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) )  mod 
D )  =  ( ( B  x.  C
)  mod  D )
)
5855, 56, 3, 4, 57syl22anc 1250 . . . . 5  |-  ( ph  ->  ( ( ( B  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D
) ) ) ) )  mod  D )  =  ( ( B  x.  C )  mod 
D ) )
5953, 58eqeq12d 2208 . . . 4  |-  ( ph  ->  ( ( ( ( A  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D ) ) ) ) )  mod  D
)  =  ( ( ( B  x.  C
)  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) )  mod 
D )  <->  ( ( A  x.  C )  mod  D )  =  ( ( B  x.  C
)  mod  D )
) )
6046, 59imbitrid 154 . . 3  |-  ( ph  ->  ( ( ( A  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( A  /  D
) ) ) ) )  =  ( ( B  x.  C )  -  ( D  x.  ( C  x.  ( |_ `  ( B  /  D ) ) ) ) )  ->  (
( A  x.  C
)  mod  D )  =  ( ( B  x.  C )  mod 
D ) ) )
6145, 60syld 45 . 2  |-  ( ph  ->  ( ( A  mod  D )  =  ( B  mod  D )  -> 
( ( A  x.  C )  mod  D
)  =  ( ( B  x.  C )  mod  D ) ) )
621, 61mpd 13 1  |-  ( ph  ->  ( ( A  x.  C )  mod  D
)  =  ( ( B  x.  C )  mod  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164    =/= wne 2364   class class class wbr 4030   ` cfv 5255  (class class class)co 5919   CCcc 7872   0cc0 7874    x. cmul 7879    < clt 8056    - cmin 8192    / cdiv 8693   ZZcz 9320   QQcq 9687   |_cfl 10340    mod cmo 10396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-po 4328  df-iso 4329  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-n0 9244  df-z 9321  df-q 9688  df-rp 9723  df-fl 10342  df-mod 10397
This theorem is referenced by:  modqmul12d  10452  modqnegd  10453  modqmulmod  10463  eulerthlema  12371  fermltl  12375  odzdvds  12386  lgsdir2lem4  15188  lgsdirprm  15191  gausslemma2d  15226
  Copyright terms: Public domain W3C validator