ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  conjmulap Unicode version

Theorem conjmulap 8872
Description: Two numbers whose reciprocals sum to 1 are called "conjugates" and satisfy this relationship. (Contributed by Jim Kingdon, 26-Feb-2020.)
Assertion
Ref Expression
conjmulap  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( ( ( 1  /  P )  +  ( 1  /  Q ) )  =  1  <->  ( ( P  -  1 )  x.  ( Q  -  1 ) )  =  1 ) )

Proof of Theorem conjmulap
StepHypRef Expression
1 simpll 527 . . . . . . 7  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  P  e.  CC )
2 simprl 529 . . . . . . 7  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  Q  e.  CC )
3 recclap 8822 . . . . . . . 8  |-  ( ( P  e.  CC  /\  P #  0 )  ->  (
1  /  P )  e.  CC )
43adantr 276 . . . . . . 7  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( 1  /  P )  e.  CC )
51, 2, 4mul32d 8295 . . . . . 6  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( ( P  x.  Q )  x.  ( 1  /  P
) )  =  ( ( P  x.  (
1  /  P ) )  x.  Q ) )
6 recidap 8829 . . . . . . . 8  |-  ( ( P  e.  CC  /\  P #  0 )  ->  ( P  x.  ( 1  /  P ) )  =  1 )
76oveq1d 6015 . . . . . . 7  |-  ( ( P  e.  CC  /\  P #  0 )  ->  (
( P  x.  (
1  /  P ) )  x.  Q )  =  ( 1  x.  Q ) )
87adantr 276 . . . . . 6  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( ( P  x.  ( 1  /  P ) )  x.  Q )  =  ( 1  x.  Q ) )
9 mullid 8140 . . . . . . 7  |-  ( Q  e.  CC  ->  (
1  x.  Q )  =  Q )
109ad2antrl 490 . . . . . 6  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( 1  x.  Q )  =  Q )
115, 8, 103eqtrd 2266 . . . . 5  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( ( P  x.  Q )  x.  ( 1  /  P
) )  =  Q )
12 recclap 8822 . . . . . . . 8  |-  ( ( Q  e.  CC  /\  Q #  0 )  ->  (
1  /  Q )  e.  CC )
1312adantl 277 . . . . . . 7  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( 1  /  Q )  e.  CC )
141, 2, 13mulassd 8166 . . . . . 6  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( ( P  x.  Q )  x.  ( 1  /  Q
) )  =  ( P  x.  ( Q  x.  ( 1  /  Q ) ) ) )
15 recidap 8829 . . . . . . . 8  |-  ( ( Q  e.  CC  /\  Q #  0 )  ->  ( Q  x.  ( 1  /  Q ) )  =  1 )
1615oveq2d 6016 . . . . . . 7  |-  ( ( Q  e.  CC  /\  Q #  0 )  ->  ( P  x.  ( Q  x.  ( 1  /  Q
) ) )  =  ( P  x.  1 ) )
1716adantl 277 . . . . . 6  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( P  x.  ( Q  x.  (
1  /  Q ) ) )  =  ( P  x.  1 ) )
18 mulrid 8139 . . . . . . 7  |-  ( P  e.  CC  ->  ( P  x.  1 )  =  P )
1918ad2antrr 488 . . . . . 6  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( P  x.  1 )  =  P )
2014, 17, 193eqtrd 2266 . . . . 5  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( ( P  x.  Q )  x.  ( 1  /  Q
) )  =  P )
2111, 20oveq12d 6018 . . . 4  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( ( ( P  x.  Q )  x.  ( 1  /  P ) )  +  ( ( P  x.  Q )  x.  (
1  /  Q ) ) )  =  ( Q  +  P ) )
22 mulcl 8122 . . . . . 6  |-  ( ( P  e.  CC  /\  Q  e.  CC )  ->  ( P  x.  Q
)  e.  CC )
2322ad2ant2r 509 . . . . 5  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( P  x.  Q )  e.  CC )
2423, 4, 13adddid 8167 . . . 4  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( ( P  x.  Q )  x.  ( ( 1  /  P )  +  ( 1  /  Q ) ) )  =  ( ( ( P  x.  Q )  x.  (
1  /  P ) )  +  ( ( P  x.  Q )  x.  ( 1  /  Q ) ) ) )
25 addcom 8279 . . . . 5  |-  ( ( P  e.  CC  /\  Q  e.  CC )  ->  ( P  +  Q
)  =  ( Q  +  P ) )
2625ad2ant2r 509 . . . 4  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( P  +  Q )  =  ( Q  +  P ) )
2721, 24, 263eqtr4d 2272 . . 3  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( ( P  x.  Q )  x.  ( ( 1  /  P )  +  ( 1  /  Q ) ) )  =  ( P  +  Q ) )
2822mulridd 8159 . . . 4  |-  ( ( P  e.  CC  /\  Q  e.  CC )  ->  ( ( P  x.  Q )  x.  1 )  =  ( P  x.  Q ) )
2928ad2ant2r 509 . . 3  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( ( P  x.  Q )  x.  1 )  =  ( P  x.  Q ) )
3027, 29eqeq12d 2244 . 2  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( ( ( P  x.  Q )  x.  ( ( 1  /  P )  +  ( 1  /  Q
) ) )  =  ( ( P  x.  Q )  x.  1 )  <->  ( P  +  Q )  =  ( P  x.  Q ) ) )
31 addcl 8120 . . . 4  |-  ( ( ( 1  /  P
)  e.  CC  /\  ( 1  /  Q
)  e.  CC )  ->  ( ( 1  /  P )  +  ( 1  /  Q
) )  e.  CC )
323, 12, 31syl2an 289 . . 3  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( ( 1  /  P )  +  ( 1  /  Q
) )  e.  CC )
33 mulap0 8797 . . 3  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( P  x.  Q ) #  0 )
34 ax-1cn 8088 . . . 4  |-  1  e.  CC
35 mulcanap 8808 . . . 4  |-  ( ( ( ( 1  /  P )  +  ( 1  /  Q ) )  e.  CC  /\  1  e.  CC  /\  (
( P  x.  Q
)  e.  CC  /\  ( P  x.  Q
) #  0 ) )  ->  ( ( ( P  x.  Q )  x.  ( ( 1  /  P )  +  ( 1  /  Q
) ) )  =  ( ( P  x.  Q )  x.  1 )  <->  ( ( 1  /  P )  +  ( 1  /  Q
) )  =  1 ) )
3634, 35mp3an2 1359 . . 3  |-  ( ( ( ( 1  /  P )  +  ( 1  /  Q ) )  e.  CC  /\  ( ( P  x.  Q )  e.  CC  /\  ( P  x.  Q
) #  0 ) )  ->  ( ( ( P  x.  Q )  x.  ( ( 1  /  P )  +  ( 1  /  Q
) ) )  =  ( ( P  x.  Q )  x.  1 )  <->  ( ( 1  /  P )  +  ( 1  /  Q
) )  =  1 ) )
3732, 23, 33, 36syl12anc 1269 . 2  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( ( ( P  x.  Q )  x.  ( ( 1  /  P )  +  ( 1  /  Q
) ) )  =  ( ( P  x.  Q )  x.  1 )  <->  ( ( 1  /  P )  +  ( 1  /  Q
) )  =  1 ) )
38 eqcom 2231 . . . 4  |-  ( ( P  +  Q )  =  ( P  x.  Q )  <->  ( P  x.  Q )  =  ( P  +  Q ) )
39 muleqadd 8811 . . . 4  |-  ( ( P  e.  CC  /\  Q  e.  CC )  ->  ( ( P  x.  Q )  =  ( P  +  Q )  <-> 
( ( P  - 
1 )  x.  ( Q  -  1 ) )  =  1 ) )
4038, 39bitrid 192 . . 3  |-  ( ( P  e.  CC  /\  Q  e.  CC )  ->  ( ( P  +  Q )  =  ( P  x.  Q )  <-> 
( ( P  - 
1 )  x.  ( Q  -  1 ) )  =  1 ) )
4140ad2ant2r 509 . 2  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( ( P  +  Q )  =  ( P  x.  Q
)  <->  ( ( P  -  1 )  x.  ( Q  -  1 ) )  =  1 ) )
4230, 37, 413bitr3d 218 1  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( ( ( 1  /  P )  +  ( 1  /  Q ) )  =  1  <->  ( ( P  -  1 )  x.  ( Q  -  1 ) )  =  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   class class class wbr 4082  (class class class)co 6000   CCcc 7993   0cc0 7995   1c1 7996    + caddc 7998    x. cmul 8000    - cmin 8313   # cap 8724    / cdiv 8815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-po 4386  df-iso 4387  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator