Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > conjmulap | Unicode version |
Description: Two numbers whose reciprocals sum to 1 are called "conjugates" and satisfy this relationship. (Contributed by Jim Kingdon, 26-Feb-2020.) |
Ref | Expression |
---|---|
conjmulap | # # |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 524 | . . . . . . 7 # # | |
2 | simprl 526 | . . . . . . 7 # # | |
3 | recclap 8596 | . . . . . . . 8 # | |
4 | 3 | adantr 274 | . . . . . . 7 # # |
5 | 1, 2, 4 | mul32d 8072 | . . . . . 6 # # |
6 | recidap 8603 | . . . . . . . 8 # | |
7 | 6 | oveq1d 5868 | . . . . . . 7 # |
8 | 7 | adantr 274 | . . . . . 6 # # |
9 | mulid2 7918 | . . . . . . 7 | |
10 | 9 | ad2antrl 487 | . . . . . 6 # # |
11 | 5, 8, 10 | 3eqtrd 2207 | . . . . 5 # # |
12 | recclap 8596 | . . . . . . . 8 # | |
13 | 12 | adantl 275 | . . . . . . 7 # # |
14 | 1, 2, 13 | mulassd 7943 | . . . . . 6 # # |
15 | recidap 8603 | . . . . . . . 8 # | |
16 | 15 | oveq2d 5869 | . . . . . . 7 # |
17 | 16 | adantl 275 | . . . . . 6 # # |
18 | mulid1 7917 | . . . . . . 7 | |
19 | 18 | ad2antrr 485 | . . . . . 6 # # |
20 | 14, 17, 19 | 3eqtrd 2207 | . . . . 5 # # |
21 | 11, 20 | oveq12d 5871 | . . . 4 # # |
22 | mulcl 7901 | . . . . . 6 | |
23 | 22 | ad2ant2r 506 | . . . . 5 # # |
24 | 23, 4, 13 | adddid 7944 | . . . 4 # # |
25 | addcom 8056 | . . . . 5 | |
26 | 25 | ad2ant2r 506 | . . . 4 # # |
27 | 21, 24, 26 | 3eqtr4d 2213 | . . 3 # # |
28 | 22 | mulid1d 7937 | . . . 4 |
29 | 28 | ad2ant2r 506 | . . 3 # # |
30 | 27, 29 | eqeq12d 2185 | . 2 # # |
31 | addcl 7899 | . . . 4 | |
32 | 3, 12, 31 | syl2an 287 | . . 3 # # |
33 | mulap0 8572 | . . 3 # # # | |
34 | ax-1cn 7867 | . . . 4 | |
35 | mulcanap 8583 | . . . 4 # | |
36 | 34, 35 | mp3an2 1320 | . . 3 # |
37 | 32, 23, 33, 36 | syl12anc 1231 | . 2 # # |
38 | eqcom 2172 | . . . 4 | |
39 | muleqadd 8586 | . . . 4 | |
40 | 38, 39 | syl5bb 191 | . . 3 |
41 | 40 | ad2ant2r 506 | . 2 # # |
42 | 30, 37, 41 | 3bitr3d 217 | 1 # # |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 class class class wbr 3989 (class class class)co 5853 cc 7772 cc0 7774 c1 7775 caddc 7777 cmul 7779 cmin 8090 # cap 8500 cdiv 8589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-po 4281 df-iso 4282 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |