ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  conjmulap Unicode version

Theorem conjmulap 8756
Description: Two numbers whose reciprocals sum to 1 are called "conjugates" and satisfy this relationship. (Contributed by Jim Kingdon, 26-Feb-2020.)
Assertion
Ref Expression
conjmulap  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( ( ( 1  /  P )  +  ( 1  /  Q ) )  =  1  <->  ( ( P  -  1 )  x.  ( Q  -  1 ) )  =  1 ) )

Proof of Theorem conjmulap
StepHypRef Expression
1 simpll 527 . . . . . . 7  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  P  e.  CC )
2 simprl 529 . . . . . . 7  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  Q  e.  CC )
3 recclap 8706 . . . . . . . 8  |-  ( ( P  e.  CC  /\  P #  0 )  ->  (
1  /  P )  e.  CC )
43adantr 276 . . . . . . 7  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( 1  /  P )  e.  CC )
51, 2, 4mul32d 8179 . . . . . 6  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( ( P  x.  Q )  x.  ( 1  /  P
) )  =  ( ( P  x.  (
1  /  P ) )  x.  Q ) )
6 recidap 8713 . . . . . . . 8  |-  ( ( P  e.  CC  /\  P #  0 )  ->  ( P  x.  ( 1  /  P ) )  =  1 )
76oveq1d 5937 . . . . . . 7  |-  ( ( P  e.  CC  /\  P #  0 )  ->  (
( P  x.  (
1  /  P ) )  x.  Q )  =  ( 1  x.  Q ) )
87adantr 276 . . . . . 6  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( ( P  x.  ( 1  /  P ) )  x.  Q )  =  ( 1  x.  Q ) )
9 mullid 8024 . . . . . . 7  |-  ( Q  e.  CC  ->  (
1  x.  Q )  =  Q )
109ad2antrl 490 . . . . . 6  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( 1  x.  Q )  =  Q )
115, 8, 103eqtrd 2233 . . . . 5  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( ( P  x.  Q )  x.  ( 1  /  P
) )  =  Q )
12 recclap 8706 . . . . . . . 8  |-  ( ( Q  e.  CC  /\  Q #  0 )  ->  (
1  /  Q )  e.  CC )
1312adantl 277 . . . . . . 7  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( 1  /  Q )  e.  CC )
141, 2, 13mulassd 8050 . . . . . 6  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( ( P  x.  Q )  x.  ( 1  /  Q
) )  =  ( P  x.  ( Q  x.  ( 1  /  Q ) ) ) )
15 recidap 8713 . . . . . . . 8  |-  ( ( Q  e.  CC  /\  Q #  0 )  ->  ( Q  x.  ( 1  /  Q ) )  =  1 )
1615oveq2d 5938 . . . . . . 7  |-  ( ( Q  e.  CC  /\  Q #  0 )  ->  ( P  x.  ( Q  x.  ( 1  /  Q
) ) )  =  ( P  x.  1 ) )
1716adantl 277 . . . . . 6  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( P  x.  ( Q  x.  (
1  /  Q ) ) )  =  ( P  x.  1 ) )
18 mulrid 8023 . . . . . . 7  |-  ( P  e.  CC  ->  ( P  x.  1 )  =  P )
1918ad2antrr 488 . . . . . 6  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( P  x.  1 )  =  P )
2014, 17, 193eqtrd 2233 . . . . 5  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( ( P  x.  Q )  x.  ( 1  /  Q
) )  =  P )
2111, 20oveq12d 5940 . . . 4  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( ( ( P  x.  Q )  x.  ( 1  /  P ) )  +  ( ( P  x.  Q )  x.  (
1  /  Q ) ) )  =  ( Q  +  P ) )
22 mulcl 8006 . . . . . 6  |-  ( ( P  e.  CC  /\  Q  e.  CC )  ->  ( P  x.  Q
)  e.  CC )
2322ad2ant2r 509 . . . . 5  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( P  x.  Q )  e.  CC )
2423, 4, 13adddid 8051 . . . 4  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( ( P  x.  Q )  x.  ( ( 1  /  P )  +  ( 1  /  Q ) ) )  =  ( ( ( P  x.  Q )  x.  (
1  /  P ) )  +  ( ( P  x.  Q )  x.  ( 1  /  Q ) ) ) )
25 addcom 8163 . . . . 5  |-  ( ( P  e.  CC  /\  Q  e.  CC )  ->  ( P  +  Q
)  =  ( Q  +  P ) )
2625ad2ant2r 509 . . . 4  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( P  +  Q )  =  ( Q  +  P ) )
2721, 24, 263eqtr4d 2239 . . 3  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( ( P  x.  Q )  x.  ( ( 1  /  P )  +  ( 1  /  Q ) ) )  =  ( P  +  Q ) )
2822mulridd 8043 . . . 4  |-  ( ( P  e.  CC  /\  Q  e.  CC )  ->  ( ( P  x.  Q )  x.  1 )  =  ( P  x.  Q ) )
2928ad2ant2r 509 . . 3  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( ( P  x.  Q )  x.  1 )  =  ( P  x.  Q ) )
3027, 29eqeq12d 2211 . 2  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( ( ( P  x.  Q )  x.  ( ( 1  /  P )  +  ( 1  /  Q
) ) )  =  ( ( P  x.  Q )  x.  1 )  <->  ( P  +  Q )  =  ( P  x.  Q ) ) )
31 addcl 8004 . . . 4  |-  ( ( ( 1  /  P
)  e.  CC  /\  ( 1  /  Q
)  e.  CC )  ->  ( ( 1  /  P )  +  ( 1  /  Q
) )  e.  CC )
323, 12, 31syl2an 289 . . 3  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( ( 1  /  P )  +  ( 1  /  Q
) )  e.  CC )
33 mulap0 8681 . . 3  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( P  x.  Q ) #  0 )
34 ax-1cn 7972 . . . 4  |-  1  e.  CC
35 mulcanap 8692 . . . 4  |-  ( ( ( ( 1  /  P )  +  ( 1  /  Q ) )  e.  CC  /\  1  e.  CC  /\  (
( P  x.  Q
)  e.  CC  /\  ( P  x.  Q
) #  0 ) )  ->  ( ( ( P  x.  Q )  x.  ( ( 1  /  P )  +  ( 1  /  Q
) ) )  =  ( ( P  x.  Q )  x.  1 )  <->  ( ( 1  /  P )  +  ( 1  /  Q
) )  =  1 ) )
3634, 35mp3an2 1336 . . 3  |-  ( ( ( ( 1  /  P )  +  ( 1  /  Q ) )  e.  CC  /\  ( ( P  x.  Q )  e.  CC  /\  ( P  x.  Q
) #  0 ) )  ->  ( ( ( P  x.  Q )  x.  ( ( 1  /  P )  +  ( 1  /  Q
) ) )  =  ( ( P  x.  Q )  x.  1 )  <->  ( ( 1  /  P )  +  ( 1  /  Q
) )  =  1 ) )
3732, 23, 33, 36syl12anc 1247 . 2  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( ( ( P  x.  Q )  x.  ( ( 1  /  P )  +  ( 1  /  Q
) ) )  =  ( ( P  x.  Q )  x.  1 )  <->  ( ( 1  /  P )  +  ( 1  /  Q
) )  =  1 ) )
38 eqcom 2198 . . . 4  |-  ( ( P  +  Q )  =  ( P  x.  Q )  <->  ( P  x.  Q )  =  ( P  +  Q ) )
39 muleqadd 8695 . . . 4  |-  ( ( P  e.  CC  /\  Q  e.  CC )  ->  ( ( P  x.  Q )  =  ( P  +  Q )  <-> 
( ( P  - 
1 )  x.  ( Q  -  1 ) )  =  1 ) )
4038, 39bitrid 192 . . 3  |-  ( ( P  e.  CC  /\  Q  e.  CC )  ->  ( ( P  +  Q )  =  ( P  x.  Q )  <-> 
( ( P  - 
1 )  x.  ( Q  -  1 ) )  =  1 ) )
4140ad2ant2r 509 . 2  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( ( P  +  Q )  =  ( P  x.  Q
)  <->  ( ( P  -  1 )  x.  ( Q  -  1 ) )  =  1 ) )
4230, 37, 413bitr3d 218 1  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( ( ( 1  /  P )  +  ( 1  /  Q ) )  =  1  <->  ( ( P  -  1 )  x.  ( Q  -  1 ) )  =  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   class class class wbr 4033  (class class class)co 5922   CCcc 7877   0cc0 7879   1c1 7880    + caddc 7882    x. cmul 7884    - cmin 8197   # cap 8608    / cdiv 8699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator