Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > conjmulap | Unicode version |
Description: Two numbers whose reciprocals sum to 1 are called "conjugates" and satisfy this relationship. (Contributed by Jim Kingdon, 26-Feb-2020.) |
Ref | Expression |
---|---|
conjmulap | # # |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 527 | . . . . . . 7 # # | |
2 | simprl 529 | . . . . . . 7 # # | |
3 | recclap 8609 | . . . . . . . 8 # | |
4 | 3 | adantr 276 | . . . . . . 7 # # |
5 | 1, 2, 4 | mul32d 8084 | . . . . . 6 # # |
6 | recidap 8616 | . . . . . . . 8 # | |
7 | 6 | oveq1d 5880 | . . . . . . 7 # |
8 | 7 | adantr 276 | . . . . . 6 # # |
9 | mulid2 7930 | . . . . . . 7 | |
10 | 9 | ad2antrl 490 | . . . . . 6 # # |
11 | 5, 8, 10 | 3eqtrd 2212 | . . . . 5 # # |
12 | recclap 8609 | . . . . . . . 8 # | |
13 | 12 | adantl 277 | . . . . . . 7 # # |
14 | 1, 2, 13 | mulassd 7955 | . . . . . 6 # # |
15 | recidap 8616 | . . . . . . . 8 # | |
16 | 15 | oveq2d 5881 | . . . . . . 7 # |
17 | 16 | adantl 277 | . . . . . 6 # # |
18 | mulid1 7929 | . . . . . . 7 | |
19 | 18 | ad2antrr 488 | . . . . . 6 # # |
20 | 14, 17, 19 | 3eqtrd 2212 | . . . . 5 # # |
21 | 11, 20 | oveq12d 5883 | . . . 4 # # |
22 | mulcl 7913 | . . . . . 6 | |
23 | 22 | ad2ant2r 509 | . . . . 5 # # |
24 | 23, 4, 13 | adddid 7956 | . . . 4 # # |
25 | addcom 8068 | . . . . 5 | |
26 | 25 | ad2ant2r 509 | . . . 4 # # |
27 | 21, 24, 26 | 3eqtr4d 2218 | . . 3 # # |
28 | 22 | mulid1d 7949 | . . . 4 |
29 | 28 | ad2ant2r 509 | . . 3 # # |
30 | 27, 29 | eqeq12d 2190 | . 2 # # |
31 | addcl 7911 | . . . 4 | |
32 | 3, 12, 31 | syl2an 289 | . . 3 # # |
33 | mulap0 8584 | . . 3 # # # | |
34 | ax-1cn 7879 | . . . 4 | |
35 | mulcanap 8595 | . . . 4 # | |
36 | 34, 35 | mp3an2 1325 | . . 3 # |
37 | 32, 23, 33, 36 | syl12anc 1236 | . 2 # # |
38 | eqcom 2177 | . . . 4 | |
39 | muleqadd 8598 | . . . 4 | |
40 | 38, 39 | bitrid 192 | . . 3 |
41 | 40 | ad2ant2r 509 | . 2 # # |
42 | 30, 37, 41 | 3bitr3d 218 | 1 # # |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wceq 1353 wcel 2146 class class class wbr 3998 (class class class)co 5865 cc 7784 cc0 7786 c1 7787 caddc 7789 cmul 7791 cmin 8102 # cap 8512 cdiv 8602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-mulrcl 7885 ax-addcom 7886 ax-mulcom 7887 ax-addass 7888 ax-mulass 7889 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-1rid 7893 ax-0id 7894 ax-rnegex 7895 ax-precex 7896 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-apti 7901 ax-pre-ltadd 7902 ax-pre-mulgt0 7903 ax-pre-mulext 7904 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-id 4287 df-po 4290 df-iso 4291 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-iota 5170 df-fun 5210 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-reap 8506 df-ap 8513 df-div 8603 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |