ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  conjmulap Unicode version

Theorem conjmulap 8646
Description: Two numbers whose reciprocals sum to 1 are called "conjugates" and satisfy this relationship. (Contributed by Jim Kingdon, 26-Feb-2020.)
Assertion
Ref Expression
conjmulap  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( ( ( 1  /  P )  +  ( 1  /  Q ) )  =  1  <->  ( ( P  -  1 )  x.  ( Q  -  1 ) )  =  1 ) )

Proof of Theorem conjmulap
StepHypRef Expression
1 simpll 524 . . . . . . 7  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  P  e.  CC )
2 simprl 526 . . . . . . 7  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  Q  e.  CC )
3 recclap 8596 . . . . . . . 8  |-  ( ( P  e.  CC  /\  P #  0 )  ->  (
1  /  P )  e.  CC )
43adantr 274 . . . . . . 7  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( 1  /  P )  e.  CC )
51, 2, 4mul32d 8072 . . . . . 6  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( ( P  x.  Q )  x.  ( 1  /  P
) )  =  ( ( P  x.  (
1  /  P ) )  x.  Q ) )
6 recidap 8603 . . . . . . . 8  |-  ( ( P  e.  CC  /\  P #  0 )  ->  ( P  x.  ( 1  /  P ) )  =  1 )
76oveq1d 5868 . . . . . . 7  |-  ( ( P  e.  CC  /\  P #  0 )  ->  (
( P  x.  (
1  /  P ) )  x.  Q )  =  ( 1  x.  Q ) )
87adantr 274 . . . . . 6  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( ( P  x.  ( 1  /  P ) )  x.  Q )  =  ( 1  x.  Q ) )
9 mulid2 7918 . . . . . . 7  |-  ( Q  e.  CC  ->  (
1  x.  Q )  =  Q )
109ad2antrl 487 . . . . . 6  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( 1  x.  Q )  =  Q )
115, 8, 103eqtrd 2207 . . . . 5  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( ( P  x.  Q )  x.  ( 1  /  P
) )  =  Q )
12 recclap 8596 . . . . . . . 8  |-  ( ( Q  e.  CC  /\  Q #  0 )  ->  (
1  /  Q )  e.  CC )
1312adantl 275 . . . . . . 7  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( 1  /  Q )  e.  CC )
141, 2, 13mulassd 7943 . . . . . 6  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( ( P  x.  Q )  x.  ( 1  /  Q
) )  =  ( P  x.  ( Q  x.  ( 1  /  Q ) ) ) )
15 recidap 8603 . . . . . . . 8  |-  ( ( Q  e.  CC  /\  Q #  0 )  ->  ( Q  x.  ( 1  /  Q ) )  =  1 )
1615oveq2d 5869 . . . . . . 7  |-  ( ( Q  e.  CC  /\  Q #  0 )  ->  ( P  x.  ( Q  x.  ( 1  /  Q
) ) )  =  ( P  x.  1 ) )
1716adantl 275 . . . . . 6  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( P  x.  ( Q  x.  (
1  /  Q ) ) )  =  ( P  x.  1 ) )
18 mulid1 7917 . . . . . . 7  |-  ( P  e.  CC  ->  ( P  x.  1 )  =  P )
1918ad2antrr 485 . . . . . 6  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( P  x.  1 )  =  P )
2014, 17, 193eqtrd 2207 . . . . 5  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( ( P  x.  Q )  x.  ( 1  /  Q
) )  =  P )
2111, 20oveq12d 5871 . . . 4  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( ( ( P  x.  Q )  x.  ( 1  /  P ) )  +  ( ( P  x.  Q )  x.  (
1  /  Q ) ) )  =  ( Q  +  P ) )
22 mulcl 7901 . . . . . 6  |-  ( ( P  e.  CC  /\  Q  e.  CC )  ->  ( P  x.  Q
)  e.  CC )
2322ad2ant2r 506 . . . . 5  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( P  x.  Q )  e.  CC )
2423, 4, 13adddid 7944 . . . 4  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( ( P  x.  Q )  x.  ( ( 1  /  P )  +  ( 1  /  Q ) ) )  =  ( ( ( P  x.  Q )  x.  (
1  /  P ) )  +  ( ( P  x.  Q )  x.  ( 1  /  Q ) ) ) )
25 addcom 8056 . . . . 5  |-  ( ( P  e.  CC  /\  Q  e.  CC )  ->  ( P  +  Q
)  =  ( Q  +  P ) )
2625ad2ant2r 506 . . . 4  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( P  +  Q )  =  ( Q  +  P ) )
2721, 24, 263eqtr4d 2213 . . 3  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( ( P  x.  Q )  x.  ( ( 1  /  P )  +  ( 1  /  Q ) ) )  =  ( P  +  Q ) )
2822mulid1d 7937 . . . 4  |-  ( ( P  e.  CC  /\  Q  e.  CC )  ->  ( ( P  x.  Q )  x.  1 )  =  ( P  x.  Q ) )
2928ad2ant2r 506 . . 3  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( ( P  x.  Q )  x.  1 )  =  ( P  x.  Q ) )
3027, 29eqeq12d 2185 . 2  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( ( ( P  x.  Q )  x.  ( ( 1  /  P )  +  ( 1  /  Q
) ) )  =  ( ( P  x.  Q )  x.  1 )  <->  ( P  +  Q )  =  ( P  x.  Q ) ) )
31 addcl 7899 . . . 4  |-  ( ( ( 1  /  P
)  e.  CC  /\  ( 1  /  Q
)  e.  CC )  ->  ( ( 1  /  P )  +  ( 1  /  Q
) )  e.  CC )
323, 12, 31syl2an 287 . . 3  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( ( 1  /  P )  +  ( 1  /  Q
) )  e.  CC )
33 mulap0 8572 . . 3  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( P  x.  Q ) #  0 )
34 ax-1cn 7867 . . . 4  |-  1  e.  CC
35 mulcanap 8583 . . . 4  |-  ( ( ( ( 1  /  P )  +  ( 1  /  Q ) )  e.  CC  /\  1  e.  CC  /\  (
( P  x.  Q
)  e.  CC  /\  ( P  x.  Q
) #  0 ) )  ->  ( ( ( P  x.  Q )  x.  ( ( 1  /  P )  +  ( 1  /  Q
) ) )  =  ( ( P  x.  Q )  x.  1 )  <->  ( ( 1  /  P )  +  ( 1  /  Q
) )  =  1 ) )
3634, 35mp3an2 1320 . . 3  |-  ( ( ( ( 1  /  P )  +  ( 1  /  Q ) )  e.  CC  /\  ( ( P  x.  Q )  e.  CC  /\  ( P  x.  Q
) #  0 ) )  ->  ( ( ( P  x.  Q )  x.  ( ( 1  /  P )  +  ( 1  /  Q
) ) )  =  ( ( P  x.  Q )  x.  1 )  <->  ( ( 1  /  P )  +  ( 1  /  Q
) )  =  1 ) )
3732, 23, 33, 36syl12anc 1231 . 2  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( ( ( P  x.  Q )  x.  ( ( 1  /  P )  +  ( 1  /  Q
) ) )  =  ( ( P  x.  Q )  x.  1 )  <->  ( ( 1  /  P )  +  ( 1  /  Q
) )  =  1 ) )
38 eqcom 2172 . . . 4  |-  ( ( P  +  Q )  =  ( P  x.  Q )  <->  ( P  x.  Q )  =  ( P  +  Q ) )
39 muleqadd 8586 . . . 4  |-  ( ( P  e.  CC  /\  Q  e.  CC )  ->  ( ( P  x.  Q )  =  ( P  +  Q )  <-> 
( ( P  - 
1 )  x.  ( Q  -  1 ) )  =  1 ) )
4038, 39syl5bb 191 . . 3  |-  ( ( P  e.  CC  /\  Q  e.  CC )  ->  ( ( P  +  Q )  =  ( P  x.  Q )  <-> 
( ( P  - 
1 )  x.  ( Q  -  1 ) )  =  1 ) )
4140ad2ant2r 506 . 2  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( ( P  +  Q )  =  ( P  x.  Q
)  <->  ( ( P  -  1 )  x.  ( Q  -  1 ) )  =  1 ) )
4230, 37, 413bitr3d 217 1  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( ( ( 1  /  P )  +  ( 1  /  Q ) )  =  1  <->  ( ( P  -  1 )  x.  ( Q  -  1 ) )  =  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   class class class wbr 3989  (class class class)co 5853   CCcc 7772   0cc0 7774   1c1 7775    + caddc 7777    x. cmul 7779    - cmin 8090   # cap 8500    / cdiv 8589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator