ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subdi Unicode version

Theorem subdi 8404
Description: Distribution of multiplication over subtraction. Theorem I.5 of [Apostol] p. 18. (Contributed by NM, 18-Nov-2004.)
Assertion
Ref Expression
subdi  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  -  C ) )  =  ( ( A  x.  B )  -  ( A  x.  C )
) )

Proof of Theorem subdi
StepHypRef Expression
1 simp1 999 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  A  e.  CC )
2 simp3 1001 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  C  e.  CC )
3 subcl 8218 . . . . . 6  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B  -  C
)  e.  CC )
433adant1 1017 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( B  -  C )  e.  CC )
51, 2, 4adddid 8044 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( C  +  ( B  -  C ) ) )  =  ( ( A  x.  C )  +  ( A  x.  ( B  -  C )
) ) )
6 pncan3 8227 . . . . . . 7  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( C  +  ( B  -  C ) )  =  B )
76ancoms 268 . . . . . 6  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( C  +  ( B  -  C ) )  =  B )
873adant1 1017 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( C  +  ( B  -  C ) )  =  B )
98oveq2d 5934 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( C  +  ( B  -  C ) ) )  =  ( A  x.  B ) )
105, 9eqtr3d 2228 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  C
)  +  ( A  x.  ( B  -  C ) ) )  =  ( A  x.  B ) )
11 mulcl 7999 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  e.  CC )
12113adant3 1019 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  B )  e.  CC )
13 mulcl 7999 . . . . 5  |-  ( ( A  e.  CC  /\  C  e.  CC )  ->  ( A  x.  C
)  e.  CC )
14133adant2 1018 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  C )  e.  CC )
15 mulcl 7999 . . . . . 6  |-  ( ( A  e.  CC  /\  ( B  -  C
)  e.  CC )  ->  ( A  x.  ( B  -  C
) )  e.  CC )
163, 15sylan2 286 . . . . 5  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  C  e.  CC ) )  ->  ( A  x.  ( B  -  C
) )  e.  CC )
17163impb 1201 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  -  C ) )  e.  CC )
1812, 14, 17subaddd 8348 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( ( A  x.  B )  -  ( A  x.  C )
)  =  ( A  x.  ( B  -  C ) )  <->  ( ( A  x.  C )  +  ( A  x.  ( B  -  C
) ) )  =  ( A  x.  B
) ) )
1910, 18mpbird 167 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  B
)  -  ( A  x.  C ) )  =  ( A  x.  ( B  -  C
) ) )
2019eqcomd 2199 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  -  C ) )  =  ( ( A  x.  B )  -  ( A  x.  C )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164  (class class class)co 5918   CCcc 7870    + caddc 7875    x. cmul 7877    - cmin 8190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-setind 4569  ax-resscn 7964  ax-1cn 7965  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-sub 8192
This theorem is referenced by:  subdir  8405  subdii  8426  subdid  8433  expubnd  10667  subsq  10717  cos01bnd  11901  modmulconst  11966  odd2np1  12014  omoe  12037  omeo  12039  phiprmpw  12360  pythagtriplem14  12415
  Copyright terms: Public domain W3C validator