ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn2ge Unicode version

Theorem nn2ge 9069
Description: There exists a positive integer greater than or equal to any two others. (Contributed by NM, 18-Aug-1999.)
Assertion
Ref Expression
nn2ge  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  E. x  e.  NN  ( A  <_  x  /\  B  <_  x ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem nn2ge
StepHypRef Expression
1 nnaddcl 9056 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  +  B
)  e.  NN )
2 0red 8073 . . . 4  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  0  e.  RR )
3 nnre 9043 . . . . 5  |-  ( B  e.  NN  ->  B  e.  RR )
43adantl 277 . . . 4  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  B  e.  RR )
5 nngt0 9061 . . . . 5  |-  ( B  e.  NN  ->  0  <  B )
65adantl 277 . . . 4  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  0  <  B )
72, 4, 6ltled 8191 . . 3  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  0  <_  B )
8 nnre 9043 . . . . 5  |-  ( A  e.  NN  ->  A  e.  RR )
98adantr 276 . . . 4  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  A  e.  RR )
109, 4addge01d 8606 . . 3  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( 0  <_  B  <->  A  <_  ( A  +  B ) ) )
117, 10mpbid 147 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  A  <_  ( A  +  B ) )
12 nngt0 9061 . . . . 5  |-  ( A  e.  NN  ->  0  <  A )
1312adantr 276 . . . 4  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  0  <  A )
142, 9, 13ltled 8191 . . 3  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  0  <_  A )
154, 9addge02d 8607 . . 3  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( 0  <_  A  <->  B  <_  ( A  +  B ) ) )
1614, 15mpbid 147 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  B  <_  ( A  +  B ) )
17 breq2 4048 . . . 4  |-  ( x  =  ( A  +  B )  ->  ( A  <_  x  <->  A  <_  ( A  +  B ) ) )
18 breq2 4048 . . . 4  |-  ( x  =  ( A  +  B )  ->  ( B  <_  x  <->  B  <_  ( A  +  B ) ) )
1917, 18anbi12d 473 . . 3  |-  ( x  =  ( A  +  B )  ->  (
( A  <_  x  /\  B  <_  x )  <-> 
( A  <_  ( A  +  B )  /\  B  <_  ( A  +  B ) ) ) )
2019rspcev 2877 . 2  |-  ( ( ( A  +  B
)  e.  NN  /\  ( A  <_  ( A  +  B )  /\  B  <_  ( A  +  B ) ) )  ->  E. x  e.  NN  ( A  <_  x  /\  B  <_  x ) )
211, 11, 16, 20syl12anc 1248 1  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  E. x  e.  NN  ( A  <_  x  /\  B  <_  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   E.wrex 2485   class class class wbr 4044  (class class class)co 5944   RRcr 7924   0cc0 7925    + caddc 7928    < clt 8107    <_ cle 8108   NNcn 9036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-xp 4681  df-cnv 4683  df-iota 5232  df-fv 5279  df-ov 5947  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-inn 9037
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator