| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn2ge | Unicode version | ||
| Description: There exists a positive integer greater than or equal to any two others. (Contributed by NM, 18-Aug-1999.) |
| Ref | Expression |
|---|---|
| nn2ge |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnaddcl 9010 |
. 2
| |
| 2 | 0red 8027 |
. . . 4
| |
| 3 | nnre 8997 |
. . . . 5
| |
| 4 | 3 | adantl 277 |
. . . 4
|
| 5 | nngt0 9015 |
. . . . 5
| |
| 6 | 5 | adantl 277 |
. . . 4
|
| 7 | 2, 4, 6 | ltled 8145 |
. . 3
|
| 8 | nnre 8997 |
. . . . 5
| |
| 9 | 8 | adantr 276 |
. . . 4
|
| 10 | 9, 4 | addge01d 8560 |
. . 3
|
| 11 | 7, 10 | mpbid 147 |
. 2
|
| 12 | nngt0 9015 |
. . . . 5
| |
| 13 | 12 | adantr 276 |
. . . 4
|
| 14 | 2, 9, 13 | ltled 8145 |
. . 3
|
| 15 | 4, 9 | addge02d 8561 |
. . 3
|
| 16 | 14, 15 | mpbid 147 |
. 2
|
| 17 | breq2 4037 |
. . . 4
| |
| 18 | breq2 4037 |
. . . 4
| |
| 19 | 17, 18 | anbi12d 473 |
. . 3
|
| 20 | 19 | rspcev 2868 |
. 2
|
| 21 | 1, 11, 16, 20 | syl12anc 1247 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-xp 4669 df-cnv 4671 df-iota 5219 df-fv 5266 df-ov 5925 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-inn 8991 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |