ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnnn0addcl GIF version

Theorem nnnn0addcl 9237
Description: A positive integer plus a nonnegative integer is a positive integer. (Contributed by NM, 20-Apr-2005.) (Proof shortened by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
nnnn0addcl ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ)

Proof of Theorem nnnn0addcl
StepHypRef Expression
1 elnn0 9209 . 2 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 nnaddcl 8970 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ)
3 oveq2 5905 . . . . 5 (𝑁 = 0 → (𝑀 + 𝑁) = (𝑀 + 0))
4 nncn 8958 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
54addridd 8137 . . . . 5 (𝑀 ∈ ℕ → (𝑀 + 0) = 𝑀)
63, 5sylan9eqr 2244 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 = 0) → (𝑀 + 𝑁) = 𝑀)
7 simpl 109 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 = 0) → 𝑀 ∈ ℕ)
86, 7eqeltrd 2266 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 = 0) → (𝑀 + 𝑁) ∈ ℕ)
92, 8jaodan 798 . 2 ((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) → (𝑀 + 𝑁) ∈ ℕ)
101, 9sylan2b 287 1 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709   = wceq 1364  wcel 2160  (class class class)co 5897  0cc0 7842   + caddc 7845  cn 8950  0cn0 9207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171  ax-sep 4136  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-addass 7944  ax-i2m1 7947  ax-0id 7950
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-iota 5196  df-fv 5243  df-ov 5900  df-inn 8951  df-n0 9208
This theorem is referenced by:  nn0nnaddcl  9238  elz2  9355  bcxmas  11532
  Copyright terms: Public domain W3C validator