| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnnn0addcl | GIF version | ||
| Description: A positive integer plus a nonnegative integer is a positive integer. (Contributed by NM, 20-Apr-2005.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
| Ref | Expression |
|---|---|
| nnnn0addcl | ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 9327 | . 2 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
| 2 | nnaddcl 9086 | . . 3 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ) | |
| 3 | oveq2 5970 | . . . . 5 ⊢ (𝑁 = 0 → (𝑀 + 𝑁) = (𝑀 + 0)) | |
| 4 | nncn 9074 | . . . . . 6 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℂ) | |
| 5 | 4 | addridd 8251 | . . . . 5 ⊢ (𝑀 ∈ ℕ → (𝑀 + 0) = 𝑀) |
| 6 | 3, 5 | sylan9eqr 2261 | . . . 4 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 = 0) → (𝑀 + 𝑁) = 𝑀) |
| 7 | simpl 109 | . . . 4 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 = 0) → 𝑀 ∈ ℕ) | |
| 8 | 6, 7 | eqeltrd 2283 | . . 3 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 = 0) → (𝑀 + 𝑁) ∈ ℕ) |
| 9 | 2, 8 | jaodan 799 | . 2 ⊢ ((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) → (𝑀 + 𝑁) ∈ ℕ) |
| 10 | 1, 9 | sylan2b 287 | 1 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 710 = wceq 1373 ∈ wcel 2177 (class class class)co 5962 0cc0 7955 + caddc 7958 ℕcn 9066 ℕ0cn0 9325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-sep 4173 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-addass 8057 ax-i2m1 8060 ax-0id 8063 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-br 4055 df-iota 5246 df-fv 5293 df-ov 5965 df-inn 9067 df-n0 9326 |
| This theorem is referenced by: nn0nnaddcl 9356 elz2 9474 bcxmas 11885 dec2nprm 12823 |
| Copyright terms: Public domain | W3C validator |