Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnnn0addcl | GIF version |
Description: A positive integer plus a nonnegative integer is a positive integer. (Contributed by NM, 20-Apr-2005.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
Ref | Expression |
---|---|
nnnn0addcl | ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 9116 | . 2 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
2 | nnaddcl 8877 | . . 3 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ) | |
3 | oveq2 5850 | . . . . 5 ⊢ (𝑁 = 0 → (𝑀 + 𝑁) = (𝑀 + 0)) | |
4 | nncn 8865 | . . . . . 6 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℂ) | |
5 | 4 | addid1d 8047 | . . . . 5 ⊢ (𝑀 ∈ ℕ → (𝑀 + 0) = 𝑀) |
6 | 3, 5 | sylan9eqr 2221 | . . . 4 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 = 0) → (𝑀 + 𝑁) = 𝑀) |
7 | simpl 108 | . . . 4 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 = 0) → 𝑀 ∈ ℕ) | |
8 | 6, 7 | eqeltrd 2243 | . . 3 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 = 0) → (𝑀 + 𝑁) ∈ ℕ) |
9 | 2, 8 | jaodan 787 | . 2 ⊢ ((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) → (𝑀 + 𝑁) ∈ ℕ) |
10 | 1, 9 | sylan2b 285 | 1 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∨ wo 698 = wceq 1343 ∈ wcel 2136 (class class class)co 5842 0cc0 7753 + caddc 7756 ℕcn 8857 ℕ0cn0 9114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4100 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addass 7855 ax-i2m1 7858 ax-0id 7861 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 df-inn 8858 df-n0 9115 |
This theorem is referenced by: nn0nnaddcl 9145 elz2 9262 bcxmas 11430 |
Copyright terms: Public domain | W3C validator |