ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnnn0addcl GIF version

Theorem nnnn0addcl 8958
Description: A positive integer plus a nonnegative integer is a positive integer. (Contributed by NM, 20-Apr-2005.) (Proof shortened by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
nnnn0addcl ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ)

Proof of Theorem nnnn0addcl
StepHypRef Expression
1 elnn0 8930 . 2 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 nnaddcl 8697 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ)
3 oveq2 5748 . . . . 5 (𝑁 = 0 → (𝑀 + 𝑁) = (𝑀 + 0))
4 nncn 8685 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
54addid1d 7875 . . . . 5 (𝑀 ∈ ℕ → (𝑀 + 0) = 𝑀)
63, 5sylan9eqr 2170 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 = 0) → (𝑀 + 𝑁) = 𝑀)
7 simpl 108 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 = 0) → 𝑀 ∈ ℕ)
86, 7eqeltrd 2192 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 = 0) → (𝑀 + 𝑁) ∈ ℕ)
92, 8jaodan 769 . 2 ((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) → (𝑀 + 𝑁) ∈ ℕ)
101, 9sylan2b 283 1 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 680   = wceq 1314  wcel 1463  (class class class)co 5740  0cc0 7584   + caddc 7587  cn 8677  0cn0 8928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-addass 7686  ax-i2m1 7689  ax-0id 7692
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rex 2397  df-rab 2400  df-v 2660  df-un 3043  df-in 3045  df-ss 3052  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-br 3898  df-iota 5056  df-fv 5099  df-ov 5743  df-inn 8678  df-n0 8929
This theorem is referenced by:  nn0nnaddcl  8959  elz2  9073  bcxmas  11198
  Copyright terms: Public domain W3C validator