ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnnn0addcl GIF version

Theorem nnnn0addcl 9296
Description: A positive integer plus a nonnegative integer is a positive integer. (Contributed by NM, 20-Apr-2005.) (Proof shortened by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
nnnn0addcl ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ)

Proof of Theorem nnnn0addcl
StepHypRef Expression
1 elnn0 9268 . 2 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 nnaddcl 9027 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ)
3 oveq2 5933 . . . . 5 (𝑁 = 0 → (𝑀 + 𝑁) = (𝑀 + 0))
4 nncn 9015 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
54addridd 8192 . . . . 5 (𝑀 ∈ ℕ → (𝑀 + 0) = 𝑀)
63, 5sylan9eqr 2251 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 = 0) → (𝑀 + 𝑁) = 𝑀)
7 simpl 109 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 = 0) → 𝑀 ∈ ℕ)
86, 7eqeltrd 2273 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 = 0) → (𝑀 + 𝑁) ∈ ℕ)
92, 8jaodan 798 . 2 ((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) → (𝑀 + 𝑁) ∈ ℕ)
101, 9sylan2b 287 1 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709   = wceq 1364  wcel 2167  (class class class)co 5925  0cc0 7896   + caddc 7899  cn 9007  0cn0 9266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-sep 4152  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addass 7998  ax-i2m1 8001  ax-0id 8004
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-iota 5220  df-fv 5267  df-ov 5928  df-inn 9008  df-n0 9267
This theorem is referenced by:  nn0nnaddcl  9297  elz2  9414  bcxmas  11671  dec2nprm  12609
  Copyright terms: Public domain W3C validator