| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnnn0addcl | GIF version | ||
| Description: A positive integer plus a nonnegative integer is a positive integer. (Contributed by NM, 20-Apr-2005.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
| Ref | Expression |
|---|---|
| nnnn0addcl | ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 9367 | . 2 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
| 2 | nnaddcl 9126 | . . 3 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ) | |
| 3 | oveq2 6008 | . . . . 5 ⊢ (𝑁 = 0 → (𝑀 + 𝑁) = (𝑀 + 0)) | |
| 4 | nncn 9114 | . . . . . 6 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℂ) | |
| 5 | 4 | addridd 8291 | . . . . 5 ⊢ (𝑀 ∈ ℕ → (𝑀 + 0) = 𝑀) |
| 6 | 3, 5 | sylan9eqr 2284 | . . . 4 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 = 0) → (𝑀 + 𝑁) = 𝑀) |
| 7 | simpl 109 | . . . 4 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 = 0) → 𝑀 ∈ ℕ) | |
| 8 | 6, 7 | eqeltrd 2306 | . . 3 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 = 0) → (𝑀 + 𝑁) ∈ ℕ) |
| 9 | 2, 8 | jaodan 802 | . 2 ⊢ ((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) → (𝑀 + 𝑁) ∈ ℕ) |
| 10 | 1, 9 | sylan2b 287 | 1 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 713 = wceq 1395 ∈ wcel 2200 (class class class)co 6000 0cc0 7995 + caddc 7998 ℕcn 9106 ℕ0cn0 9365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4201 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addass 8097 ax-i2m1 8100 ax-0id 8103 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-iota 5277 df-fv 5325 df-ov 6003 df-inn 9107 df-n0 9366 |
| This theorem is referenced by: nn0nnaddcl 9396 elz2 9514 bcxmas 11995 dec2nprm 12933 |
| Copyright terms: Public domain | W3C validator |