ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  numadd Unicode version

Theorem numadd 9585
Description: Add two decimal integers  M and  N (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
numma.1  |-  T  e. 
NN0
numma.2  |-  A  e. 
NN0
numma.3  |-  B  e. 
NN0
numma.4  |-  C  e. 
NN0
numma.5  |-  D  e. 
NN0
numma.6  |-  M  =  ( ( T  x.  A )  +  B
)
numma.7  |-  N  =  ( ( T  x.  C )  +  D
)
numadd.8  |-  ( A  +  C )  =  E
numadd.9  |-  ( B  +  D )  =  F
Assertion
Ref Expression
numadd  |-  ( M  +  N )  =  ( ( T  x.  E )  +  F
)

Proof of Theorem numadd
StepHypRef Expression
1 numma.6 . . . . . 6  |-  M  =  ( ( T  x.  A )  +  B
)
2 numma.1 . . . . . . 7  |-  T  e. 
NN0
3 numma.2 . . . . . . 7  |-  A  e. 
NN0
4 numma.3 . . . . . . 7  |-  B  e. 
NN0
52, 3, 4numcl 9551 . . . . . 6  |-  ( ( T  x.  A )  +  B )  e. 
NN0
61, 5eqeltri 2280 . . . . 5  |-  M  e. 
NN0
76nn0cni 9342 . . . 4  |-  M  e.  CC
87mulridi 8109 . . 3  |-  ( M  x.  1 )  =  M
98oveq1i 5977 . 2  |-  ( ( M  x.  1 )  +  N )  =  ( M  +  N
)
10 numma.4 . . 3  |-  C  e. 
NN0
11 numma.5 . . 3  |-  D  e. 
NN0
12 numma.7 . . 3  |-  N  =  ( ( T  x.  C )  +  D
)
13 1nn0 9346 . . 3  |-  1  e.  NN0
143nn0cni 9342 . . . . . 6  |-  A  e.  CC
1514mulridi 8109 . . . . 5  |-  ( A  x.  1 )  =  A
1615oveq1i 5977 . . . 4  |-  ( ( A  x.  1 )  +  C )  =  ( A  +  C
)
17 numadd.8 . . . 4  |-  ( A  +  C )  =  E
1816, 17eqtri 2228 . . 3  |-  ( ( A  x.  1 )  +  C )  =  E
194nn0cni 9342 . . . . . 6  |-  B  e.  CC
2019mulridi 8109 . . . . 5  |-  ( B  x.  1 )  =  B
2120oveq1i 5977 . . . 4  |-  ( ( B  x.  1 )  +  D )  =  ( B  +  D
)
22 numadd.9 . . . 4  |-  ( B  +  D )  =  F
2321, 22eqtri 2228 . . 3  |-  ( ( B  x.  1 )  +  D )  =  F
242, 3, 4, 10, 11, 1, 12, 13, 18, 23numma 9582 . 2  |-  ( ( M  x.  1 )  +  N )  =  ( ( T  x.  E )  +  F
)
259, 24eqtr3i 2230 1  |-  ( M  +  N )  =  ( ( T  x.  E )  +  F
)
Colors of variables: wff set class
Syntax hints:    = wceq 1373    e. wcel 2178  (class class class)co 5967   1c1 7961    + caddc 7963    x. cmul 7965   NN0cn0 9330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-sub 8280  df-inn 9072  df-n0 9331
This theorem is referenced by:  decadd  9592
  Copyright terms: Public domain W3C validator