ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  numadd Unicode version

Theorem numadd 9368
Description: Add two decimal integers  M and  N (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
numma.1  |-  T  e. 
NN0
numma.2  |-  A  e. 
NN0
numma.3  |-  B  e. 
NN0
numma.4  |-  C  e. 
NN0
numma.5  |-  D  e. 
NN0
numma.6  |-  M  =  ( ( T  x.  A )  +  B
)
numma.7  |-  N  =  ( ( T  x.  C )  +  D
)
numadd.8  |-  ( A  +  C )  =  E
numadd.9  |-  ( B  +  D )  =  F
Assertion
Ref Expression
numadd  |-  ( M  +  N )  =  ( ( T  x.  E )  +  F
)

Proof of Theorem numadd
StepHypRef Expression
1 numma.6 . . . . . 6  |-  M  =  ( ( T  x.  A )  +  B
)
2 numma.1 . . . . . . 7  |-  T  e. 
NN0
3 numma.2 . . . . . . 7  |-  A  e. 
NN0
4 numma.3 . . . . . . 7  |-  B  e. 
NN0
52, 3, 4numcl 9334 . . . . . 6  |-  ( ( T  x.  A )  +  B )  e. 
NN0
61, 5eqeltri 2239 . . . . 5  |-  M  e. 
NN0
76nn0cni 9126 . . . 4  |-  M  e.  CC
87mulid1i 7901 . . 3  |-  ( M  x.  1 )  =  M
98oveq1i 5852 . 2  |-  ( ( M  x.  1 )  +  N )  =  ( M  +  N
)
10 numma.4 . . 3  |-  C  e. 
NN0
11 numma.5 . . 3  |-  D  e. 
NN0
12 numma.7 . . 3  |-  N  =  ( ( T  x.  C )  +  D
)
13 1nn0 9130 . . 3  |-  1  e.  NN0
143nn0cni 9126 . . . . . 6  |-  A  e.  CC
1514mulid1i 7901 . . . . 5  |-  ( A  x.  1 )  =  A
1615oveq1i 5852 . . . 4  |-  ( ( A  x.  1 )  +  C )  =  ( A  +  C
)
17 numadd.8 . . . 4  |-  ( A  +  C )  =  E
1816, 17eqtri 2186 . . 3  |-  ( ( A  x.  1 )  +  C )  =  E
194nn0cni 9126 . . . . . 6  |-  B  e.  CC
2019mulid1i 7901 . . . . 5  |-  ( B  x.  1 )  =  B
2120oveq1i 5852 . . . 4  |-  ( ( B  x.  1 )  +  D )  =  ( B  +  D
)
22 numadd.9 . . . 4  |-  ( B  +  D )  =  F
2321, 22eqtri 2186 . . 3  |-  ( ( B  x.  1 )  +  D )  =  F
242, 3, 4, 10, 11, 1, 12, 13, 18, 23numma 9365 . 2  |-  ( ( M  x.  1 )  +  N )  =  ( ( T  x.  E )  +  F
)
259, 24eqtr3i 2188 1  |-  ( M  +  N )  =  ( ( T  x.  E )  +  F
)
Colors of variables: wff set class
Syntax hints:    = wceq 1343    e. wcel 2136  (class class class)co 5842   1c1 7754    + caddc 7756    x. cmul 7758   NN0cn0 9114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-sub 8071  df-inn 8858  df-n0 9115
This theorem is referenced by:  decadd  9375
  Copyright terms: Public domain W3C validator