| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nummac | Unicode version | ||
| Description: Perform a multiply-add of
two decimal integers  | 
| Ref | Expression | 
|---|---|
| numma.1 | 
 | 
| numma.2 | 
 | 
| numma.3 | 
 | 
| numma.4 | 
 | 
| numma.5 | 
 | 
| numma.6 | 
 | 
| numma.7 | 
 | 
| nummac.8 | 
 | 
| nummac.9 | 
 | 
| nummac.10 | 
 | 
| nummac.11 | 
 | 
| nummac.12 | 
 | 
| Ref | Expression | 
|---|---|
| nummac | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | numma.1 | 
. . . . 5
 | |
| 2 | 1 | nn0cni 9261 | 
. . . 4
 | 
| 3 | numma.2 | 
. . . . . . . . 9
 | |
| 4 | 3 | nn0cni 9261 | 
. . . . . . . 8
 | 
| 5 | nummac.8 | 
. . . . . . . . 9
 | |
| 6 | 5 | nn0cni 9261 | 
. . . . . . . 8
 | 
| 7 | 4, 6 | mulcli 8031 | 
. . . . . . 7
 | 
| 8 | numma.4 | 
. . . . . . . 8
 | |
| 9 | 8 | nn0cni 9261 | 
. . . . . . 7
 | 
| 10 | nummac.10 | 
. . . . . . . 8
 | |
| 11 | 10 | nn0cni 9261 | 
. . . . . . 7
 | 
| 12 | 7, 9, 11 | addassi 8034 | 
. . . . . 6
 | 
| 13 | nummac.11 | 
. . . . . 6
 | |
| 14 | 12, 13 | eqtri 2217 | 
. . . . 5
 | 
| 15 | 7, 9 | addcli 8030 | 
. . . . . 6
 | 
| 16 | 15, 11 | addcli 8030 | 
. . . . 5
 | 
| 17 | 14, 16 | eqeltrri 2270 | 
. . . 4
 | 
| 18 | 2, 17, 11 | subdii 8433 | 
. . 3
 | 
| 19 | 18 | oveq1i 5932 | 
. 2
 | 
| 20 | numma.3 | 
. . 3
 | |
| 21 | numma.5 | 
. . 3
 | |
| 22 | numma.6 | 
. . 3
 | |
| 23 | numma.7 | 
. . 3
 | |
| 24 | 17, 11, 15 | subadd2i 8314 | 
. . . . 5
 | 
| 25 | 14, 24 | mpbir 146 | 
. . . 4
 | 
| 26 | 25 | eqcomi 2200 | 
. . 3
 | 
| 27 | nummac.12 | 
. . 3
 | |
| 28 | 1, 3, 20, 8, 21, 22, 23, 5, 26, 27 | numma 9500 | 
. 2
 | 
| 29 | 2, 17 | mulcli 8031 | 
. . . . 5
 | 
| 30 | 2, 11 | mulcli 8031 | 
. . . . 5
 | 
| 31 | npcan 8235 | 
. . . . 5
 | |
| 32 | 29, 30, 31 | mp2an 426 | 
. . . 4
 | 
| 33 | 32 | oveq1i 5932 | 
. . 3
 | 
| 34 | 29, 30 | subcli 8302 | 
. . . 4
 | 
| 35 | nummac.9 | 
. . . . 5
 | |
| 36 | 35 | nn0cni 9261 | 
. . . 4
 | 
| 37 | 34, 30, 36 | addassi 8034 | 
. . 3
 | 
| 38 | 33, 37 | eqtr3i 2219 | 
. 2
 | 
| 39 | 19, 28, 38 | 3eqtr4i 2227 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-sub 8199 df-inn 8991 df-n0 9250 | 
| This theorem is referenced by: numma2c 9502 numaddc 9504 nummul1c 9505 decmac 9508 | 
| Copyright terms: Public domain | W3C validator |