ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nummac Unicode version

Theorem nummac 9501
Description: Perform a multiply-add of two decimal integers  M and  N against a fixed multiplicand  P (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
numma.1  |-  T  e. 
NN0
numma.2  |-  A  e. 
NN0
numma.3  |-  B  e. 
NN0
numma.4  |-  C  e. 
NN0
numma.5  |-  D  e. 
NN0
numma.6  |-  M  =  ( ( T  x.  A )  +  B
)
numma.7  |-  N  =  ( ( T  x.  C )  +  D
)
nummac.8  |-  P  e. 
NN0
nummac.9  |-  F  e. 
NN0
nummac.10  |-  G  e. 
NN0
nummac.11  |-  ( ( A  x.  P )  +  ( C  +  G ) )  =  E
nummac.12  |-  ( ( B  x.  P )  +  D )  =  ( ( T  x.  G )  +  F
)
Assertion
Ref Expression
nummac  |-  ( ( M  x.  P )  +  N )  =  ( ( T  x.  E )  +  F
)

Proof of Theorem nummac
StepHypRef Expression
1 numma.1 . . . . 5  |-  T  e. 
NN0
21nn0cni 9261 . . . 4  |-  T  e.  CC
3 numma.2 . . . . . . . . 9  |-  A  e. 
NN0
43nn0cni 9261 . . . . . . . 8  |-  A  e.  CC
5 nummac.8 . . . . . . . . 9  |-  P  e. 
NN0
65nn0cni 9261 . . . . . . . 8  |-  P  e.  CC
74, 6mulcli 8031 . . . . . . 7  |-  ( A  x.  P )  e.  CC
8 numma.4 . . . . . . . 8  |-  C  e. 
NN0
98nn0cni 9261 . . . . . . 7  |-  C  e.  CC
10 nummac.10 . . . . . . . 8  |-  G  e. 
NN0
1110nn0cni 9261 . . . . . . 7  |-  G  e.  CC
127, 9, 11addassi 8034 . . . . . 6  |-  ( ( ( A  x.  P
)  +  C )  +  G )  =  ( ( A  x.  P )  +  ( C  +  G ) )
13 nummac.11 . . . . . 6  |-  ( ( A  x.  P )  +  ( C  +  G ) )  =  E
1412, 13eqtri 2217 . . . . 5  |-  ( ( ( A  x.  P
)  +  C )  +  G )  =  E
157, 9addcli 8030 . . . . . 6  |-  ( ( A  x.  P )  +  C )  e.  CC
1615, 11addcli 8030 . . . . 5  |-  ( ( ( A  x.  P
)  +  C )  +  G )  e.  CC
1714, 16eqeltrri 2270 . . . 4  |-  E  e.  CC
182, 17, 11subdii 8433 . . 3  |-  ( T  x.  ( E  -  G ) )  =  ( ( T  x.  E )  -  ( T  x.  G )
)
1918oveq1i 5932 . 2  |-  ( ( T  x.  ( E  -  G ) )  +  ( ( T  x.  G )  +  F ) )  =  ( ( ( T  x.  E )  -  ( T  x.  G
) )  +  ( ( T  x.  G
)  +  F ) )
20 numma.3 . . 3  |-  B  e. 
NN0
21 numma.5 . . 3  |-  D  e. 
NN0
22 numma.6 . . 3  |-  M  =  ( ( T  x.  A )  +  B
)
23 numma.7 . . 3  |-  N  =  ( ( T  x.  C )  +  D
)
2417, 11, 15subadd2i 8314 . . . . 5  |-  ( ( E  -  G )  =  ( ( A  x.  P )  +  C )  <->  ( (
( A  x.  P
)  +  C )  +  G )  =  E )
2514, 24mpbir 146 . . . 4  |-  ( E  -  G )  =  ( ( A  x.  P )  +  C
)
2625eqcomi 2200 . . 3  |-  ( ( A  x.  P )  +  C )  =  ( E  -  G
)
27 nummac.12 . . 3  |-  ( ( B  x.  P )  +  D )  =  ( ( T  x.  G )  +  F
)
281, 3, 20, 8, 21, 22, 23, 5, 26, 27numma 9500 . 2  |-  ( ( M  x.  P )  +  N )  =  ( ( T  x.  ( E  -  G
) )  +  ( ( T  x.  G
)  +  F ) )
292, 17mulcli 8031 . . . . 5  |-  ( T  x.  E )  e.  CC
302, 11mulcli 8031 . . . . 5  |-  ( T  x.  G )  e.  CC
31 npcan 8235 . . . . 5  |-  ( ( ( T  x.  E
)  e.  CC  /\  ( T  x.  G
)  e.  CC )  ->  ( ( ( T  x.  E )  -  ( T  x.  G ) )  +  ( T  x.  G
) )  =  ( T  x.  E ) )
3229, 30, 31mp2an 426 . . . 4  |-  ( ( ( T  x.  E
)  -  ( T  x.  G ) )  +  ( T  x.  G ) )  =  ( T  x.  E
)
3332oveq1i 5932 . . 3  |-  ( ( ( ( T  x.  E )  -  ( T  x.  G )
)  +  ( T  x.  G ) )  +  F )  =  ( ( T  x.  E )  +  F
)
3429, 30subcli 8302 . . . 4  |-  ( ( T  x.  E )  -  ( T  x.  G ) )  e.  CC
35 nummac.9 . . . . 5  |-  F  e. 
NN0
3635nn0cni 9261 . . . 4  |-  F  e.  CC
3734, 30, 36addassi 8034 . . 3  |-  ( ( ( ( T  x.  E )  -  ( T  x.  G )
)  +  ( T  x.  G ) )  +  F )  =  ( ( ( T  x.  E )  -  ( T  x.  G
) )  +  ( ( T  x.  G
)  +  F ) )
3833, 37eqtr3i 2219 . 2  |-  ( ( T  x.  E )  +  F )  =  ( ( ( T  x.  E )  -  ( T  x.  G
) )  +  ( ( T  x.  G
)  +  F ) )
3919, 28, 383eqtr4i 2227 1  |-  ( ( M  x.  P )  +  N )  =  ( ( T  x.  E )  +  F
)
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2167  (class class class)co 5922   CCcc 7877    + caddc 7882    x. cmul 7884    - cmin 8197   NN0cn0 9249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-sub 8199  df-inn 8991  df-n0 9250
This theorem is referenced by:  numma2c  9502  numaddc  9504  nummul1c  9505  decmac  9508
  Copyright terms: Public domain W3C validator