Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nummac | Unicode version |
Description: Perform a multiply-add of two decimal integers and against a fixed multiplicand (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
numma.1 | |
numma.2 | |
numma.3 | |
numma.4 | |
numma.5 | |
numma.6 | |
numma.7 | |
nummac.8 | |
nummac.9 | |
nummac.10 | |
nummac.11 | |
nummac.12 |
Ref | Expression |
---|---|
nummac |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numma.1 | . . . . 5 | |
2 | 1 | nn0cni 9126 | . . . 4 |
3 | numma.2 | . . . . . . . . 9 | |
4 | 3 | nn0cni 9126 | . . . . . . . 8 |
5 | nummac.8 | . . . . . . . . 9 | |
6 | 5 | nn0cni 9126 | . . . . . . . 8 |
7 | 4, 6 | mulcli 7904 | . . . . . . 7 |
8 | numma.4 | . . . . . . . 8 | |
9 | 8 | nn0cni 9126 | . . . . . . 7 |
10 | nummac.10 | . . . . . . . 8 | |
11 | 10 | nn0cni 9126 | . . . . . . 7 |
12 | 7, 9, 11 | addassi 7907 | . . . . . 6 |
13 | nummac.11 | . . . . . 6 | |
14 | 12, 13 | eqtri 2186 | . . . . 5 |
15 | 7, 9 | addcli 7903 | . . . . . 6 |
16 | 15, 11 | addcli 7903 | . . . . 5 |
17 | 14, 16 | eqeltrri 2240 | . . . 4 |
18 | 2, 17, 11 | subdii 8305 | . . 3 |
19 | 18 | oveq1i 5852 | . 2 |
20 | numma.3 | . . 3 | |
21 | numma.5 | . . 3 | |
22 | numma.6 | . . 3 | |
23 | numma.7 | . . 3 | |
24 | 17, 11, 15 | subadd2i 8186 | . . . . 5 |
25 | 14, 24 | mpbir 145 | . . . 4 |
26 | 25 | eqcomi 2169 | . . 3 |
27 | nummac.12 | . . 3 | |
28 | 1, 3, 20, 8, 21, 22, 23, 5, 26, 27 | numma 9365 | . 2 |
29 | 2, 17 | mulcli 7904 | . . . . 5 |
30 | 2, 11 | mulcli 7904 | . . . . 5 |
31 | npcan 8107 | . . . . 5 | |
32 | 29, 30, 31 | mp2an 423 | . . . 4 |
33 | 32 | oveq1i 5852 | . . 3 |
34 | 29, 30 | subcli 8174 | . . . 4 |
35 | nummac.9 | . . . . 5 | |
36 | 35 | nn0cni 9126 | . . . 4 |
37 | 34, 30, 36 | addassi 7907 | . . 3 |
38 | 33, 37 | eqtr3i 2188 | . 2 |
39 | 19, 28, 38 | 3eqtr4i 2196 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1343 wcel 2136 (class class class)co 5842 cc 7751 caddc 7756 cmul 7758 cmin 8069 cn0 9114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-sub 8071 df-inn 8858 df-n0 9115 |
This theorem is referenced by: numma2c 9367 numaddc 9369 nummul1c 9370 decmac 9373 |
Copyright terms: Public domain | W3C validator |