ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nummac Unicode version

Theorem nummac 9430
Description: Perform a multiply-add of two decimal integers  M and  N against a fixed multiplicand  P (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
numma.1  |-  T  e. 
NN0
numma.2  |-  A  e. 
NN0
numma.3  |-  B  e. 
NN0
numma.4  |-  C  e. 
NN0
numma.5  |-  D  e. 
NN0
numma.6  |-  M  =  ( ( T  x.  A )  +  B
)
numma.7  |-  N  =  ( ( T  x.  C )  +  D
)
nummac.8  |-  P  e. 
NN0
nummac.9  |-  F  e. 
NN0
nummac.10  |-  G  e. 
NN0
nummac.11  |-  ( ( A  x.  P )  +  ( C  +  G ) )  =  E
nummac.12  |-  ( ( B  x.  P )  +  D )  =  ( ( T  x.  G )  +  F
)
Assertion
Ref Expression
nummac  |-  ( ( M  x.  P )  +  N )  =  ( ( T  x.  E )  +  F
)

Proof of Theorem nummac
StepHypRef Expression
1 numma.1 . . . . 5  |-  T  e. 
NN0
21nn0cni 9190 . . . 4  |-  T  e.  CC
3 numma.2 . . . . . . . . 9  |-  A  e. 
NN0
43nn0cni 9190 . . . . . . . 8  |-  A  e.  CC
5 nummac.8 . . . . . . . . 9  |-  P  e. 
NN0
65nn0cni 9190 . . . . . . . 8  |-  P  e.  CC
74, 6mulcli 7964 . . . . . . 7  |-  ( A  x.  P )  e.  CC
8 numma.4 . . . . . . . 8  |-  C  e. 
NN0
98nn0cni 9190 . . . . . . 7  |-  C  e.  CC
10 nummac.10 . . . . . . . 8  |-  G  e. 
NN0
1110nn0cni 9190 . . . . . . 7  |-  G  e.  CC
127, 9, 11addassi 7967 . . . . . 6  |-  ( ( ( A  x.  P
)  +  C )  +  G )  =  ( ( A  x.  P )  +  ( C  +  G ) )
13 nummac.11 . . . . . 6  |-  ( ( A  x.  P )  +  ( C  +  G ) )  =  E
1412, 13eqtri 2198 . . . . 5  |-  ( ( ( A  x.  P
)  +  C )  +  G )  =  E
157, 9addcli 7963 . . . . . 6  |-  ( ( A  x.  P )  +  C )  e.  CC
1615, 11addcli 7963 . . . . 5  |-  ( ( ( A  x.  P
)  +  C )  +  G )  e.  CC
1714, 16eqeltrri 2251 . . . 4  |-  E  e.  CC
182, 17, 11subdii 8366 . . 3  |-  ( T  x.  ( E  -  G ) )  =  ( ( T  x.  E )  -  ( T  x.  G )
)
1918oveq1i 5887 . 2  |-  ( ( T  x.  ( E  -  G ) )  +  ( ( T  x.  G )  +  F ) )  =  ( ( ( T  x.  E )  -  ( T  x.  G
) )  +  ( ( T  x.  G
)  +  F ) )
20 numma.3 . . 3  |-  B  e. 
NN0
21 numma.5 . . 3  |-  D  e. 
NN0
22 numma.6 . . 3  |-  M  =  ( ( T  x.  A )  +  B
)
23 numma.7 . . 3  |-  N  =  ( ( T  x.  C )  +  D
)
2417, 11, 15subadd2i 8247 . . . . 5  |-  ( ( E  -  G )  =  ( ( A  x.  P )  +  C )  <->  ( (
( A  x.  P
)  +  C )  +  G )  =  E )
2514, 24mpbir 146 . . . 4  |-  ( E  -  G )  =  ( ( A  x.  P )  +  C
)
2625eqcomi 2181 . . 3  |-  ( ( A  x.  P )  +  C )  =  ( E  -  G
)
27 nummac.12 . . 3  |-  ( ( B  x.  P )  +  D )  =  ( ( T  x.  G )  +  F
)
281, 3, 20, 8, 21, 22, 23, 5, 26, 27numma 9429 . 2  |-  ( ( M  x.  P )  +  N )  =  ( ( T  x.  ( E  -  G
) )  +  ( ( T  x.  G
)  +  F ) )
292, 17mulcli 7964 . . . . 5  |-  ( T  x.  E )  e.  CC
302, 11mulcli 7964 . . . . 5  |-  ( T  x.  G )  e.  CC
31 npcan 8168 . . . . 5  |-  ( ( ( T  x.  E
)  e.  CC  /\  ( T  x.  G
)  e.  CC )  ->  ( ( ( T  x.  E )  -  ( T  x.  G ) )  +  ( T  x.  G
) )  =  ( T  x.  E ) )
3229, 30, 31mp2an 426 . . . 4  |-  ( ( ( T  x.  E
)  -  ( T  x.  G ) )  +  ( T  x.  G ) )  =  ( T  x.  E
)
3332oveq1i 5887 . . 3  |-  ( ( ( ( T  x.  E )  -  ( T  x.  G )
)  +  ( T  x.  G ) )  +  F )  =  ( ( T  x.  E )  +  F
)
3429, 30subcli 8235 . . . 4  |-  ( ( T  x.  E )  -  ( T  x.  G ) )  e.  CC
35 nummac.9 . . . . 5  |-  F  e. 
NN0
3635nn0cni 9190 . . . 4  |-  F  e.  CC
3734, 30, 36addassi 7967 . . 3  |-  ( ( ( ( T  x.  E )  -  ( T  x.  G )
)  +  ( T  x.  G ) )  +  F )  =  ( ( ( T  x.  E )  -  ( T  x.  G
) )  +  ( ( T  x.  G
)  +  F ) )
3833, 37eqtr3i 2200 . 2  |-  ( ( T  x.  E )  +  F )  =  ( ( ( T  x.  E )  -  ( T  x.  G
) )  +  ( ( T  x.  G
)  +  F ) )
3919, 28, 383eqtr4i 2208 1  |-  ( ( M  x.  P )  +  N )  =  ( ( T  x.  E )  +  F
)
Colors of variables: wff set class
Syntax hints:    = wceq 1353    e. wcel 2148  (class class class)co 5877   CCcc 7811    + caddc 7816    x. cmul 7818    - cmin 8130   NN0cn0 9178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-sub 8132  df-inn 8922  df-n0 9179
This theorem is referenced by:  numma2c  9431  numaddc  9433  nummul1c  9434  decmac  9437
  Copyright terms: Public domain W3C validator