![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > offveqb | GIF version |
Description: Equivalent expressions for equality with a function operation. (Contributed by NM, 9-Oct-2014.) (Proof shortened by Mario Carneiro, 5-Dec-2016.) |
Ref | Expression |
---|---|
offveq.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
offveq.2 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
offveq.3 | ⊢ (𝜑 → 𝐺 Fn 𝐴) |
offveq.4 | ⊢ (𝜑 → 𝐻 Fn 𝐴) |
offveq.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) |
offveq.6 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = 𝐶) |
Ref | Expression |
---|---|
offveqb | ⊢ (𝜑 → (𝐻 = (𝐹 ∘𝑓 𝑅𝐺) ↔ ∀𝑥 ∈ 𝐴 (𝐻‘𝑥) = (𝐵𝑅𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | offveq.4 | . . . 4 ⊢ (𝜑 → 𝐻 Fn 𝐴) | |
2 | dffn5im 5582 | . . . 4 ⊢ (𝐻 Fn 𝐴 → 𝐻 = (𝑥 ∈ 𝐴 ↦ (𝐻‘𝑥))) | |
3 | 1, 2 | syl 14 | . . 3 ⊢ (𝜑 → 𝐻 = (𝑥 ∈ 𝐴 ↦ (𝐻‘𝑥))) |
4 | offveq.2 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
5 | offveq.3 | . . . 4 ⊢ (𝜑 → 𝐺 Fn 𝐴) | |
6 | offveq.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
7 | inidm 3359 | . . . 4 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
8 | offveq.5 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) | |
9 | offveq.6 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = 𝐶) | |
10 | 4, 5, 6, 6, 7, 8, 9 | offval 6115 | . . 3 ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = (𝑥 ∈ 𝐴 ↦ (𝐵𝑅𝐶))) |
11 | 3, 10 | eqeq12d 2204 | . 2 ⊢ (𝜑 → (𝐻 = (𝐹 ∘𝑓 𝑅𝐺) ↔ (𝑥 ∈ 𝐴 ↦ (𝐻‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐵𝑅𝐶)))) |
12 | funfvex 5551 | . . . . . 6 ⊢ ((Fun 𝐻 ∧ 𝑥 ∈ dom 𝐻) → (𝐻‘𝑥) ∈ V) | |
13 | 12 | funfni 5335 | . . . . 5 ⊢ ((𝐻 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐻‘𝑥) ∈ V) |
14 | 1, 13 | sylan 283 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐻‘𝑥) ∈ V) |
15 | 14 | ralrimiva 2563 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐻‘𝑥) ∈ V) |
16 | mpteqb 5627 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝐻‘𝑥) ∈ V → ((𝑥 ∈ 𝐴 ↦ (𝐻‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐵𝑅𝐶)) ↔ ∀𝑥 ∈ 𝐴 (𝐻‘𝑥) = (𝐵𝑅𝐶))) | |
17 | 15, 16 | syl 14 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (𝐻‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐵𝑅𝐶)) ↔ ∀𝑥 ∈ 𝐴 (𝐻‘𝑥) = (𝐵𝑅𝐶))) |
18 | 11, 17 | bitrd 188 | 1 ⊢ (𝜑 → (𝐻 = (𝐹 ∘𝑓 𝑅𝐺) ↔ ∀𝑥 ∈ 𝐴 (𝐻‘𝑥) = (𝐵𝑅𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2160 ∀wral 2468 Vcvv 2752 ↦ cmpt 4079 Fn wfn 5230 ‘cfv 5235 (class class class)co 5897 ∘𝑓 cof 6105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-setind 4554 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-ov 5900 df-oprab 5901 df-mpo 5902 df-of 6107 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |