![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > offveqb | GIF version |
Description: Equivalent expressions for equality with a function operation. (Contributed by NM, 9-Oct-2014.) (Proof shortened by Mario Carneiro, 5-Dec-2016.) |
Ref | Expression |
---|---|
offveq.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
offveq.2 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
offveq.3 | ⊢ (𝜑 → 𝐺 Fn 𝐴) |
offveq.4 | ⊢ (𝜑 → 𝐻 Fn 𝐴) |
offveq.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) |
offveq.6 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = 𝐶) |
Ref | Expression |
---|---|
offveqb | ⊢ (𝜑 → (𝐻 = (𝐹 ∘𝑓 𝑅𝐺) ↔ ∀𝑥 ∈ 𝐴 (𝐻‘𝑥) = (𝐵𝑅𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | offveq.4 | . . . 4 ⊢ (𝜑 → 𝐻 Fn 𝐴) | |
2 | dffn5im 5563 | . . . 4 ⊢ (𝐻 Fn 𝐴 → 𝐻 = (𝑥 ∈ 𝐴 ↦ (𝐻‘𝑥))) | |
3 | 1, 2 | syl 14 | . . 3 ⊢ (𝜑 → 𝐻 = (𝑥 ∈ 𝐴 ↦ (𝐻‘𝑥))) |
4 | offveq.2 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
5 | offveq.3 | . . . 4 ⊢ (𝜑 → 𝐺 Fn 𝐴) | |
6 | offveq.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
7 | inidm 3346 | . . . 4 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
8 | offveq.5 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) | |
9 | offveq.6 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = 𝐶) | |
10 | 4, 5, 6, 6, 7, 8, 9 | offval 6092 | . . 3 ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = (𝑥 ∈ 𝐴 ↦ (𝐵𝑅𝐶))) |
11 | 3, 10 | eqeq12d 2192 | . 2 ⊢ (𝜑 → (𝐻 = (𝐹 ∘𝑓 𝑅𝐺) ↔ (𝑥 ∈ 𝐴 ↦ (𝐻‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐵𝑅𝐶)))) |
12 | funfvex 5534 | . . . . . 6 ⊢ ((Fun 𝐻 ∧ 𝑥 ∈ dom 𝐻) → (𝐻‘𝑥) ∈ V) | |
13 | 12 | funfni 5318 | . . . . 5 ⊢ ((𝐻 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐻‘𝑥) ∈ V) |
14 | 1, 13 | sylan 283 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐻‘𝑥) ∈ V) |
15 | 14 | ralrimiva 2550 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐻‘𝑥) ∈ V) |
16 | mpteqb 5608 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝐻‘𝑥) ∈ V → ((𝑥 ∈ 𝐴 ↦ (𝐻‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐵𝑅𝐶)) ↔ ∀𝑥 ∈ 𝐴 (𝐻‘𝑥) = (𝐵𝑅𝐶))) | |
17 | 15, 16 | syl 14 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (𝐻‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐵𝑅𝐶)) ↔ ∀𝑥 ∈ 𝐴 (𝐻‘𝑥) = (𝐵𝑅𝐶))) |
18 | 11, 17 | bitrd 188 | 1 ⊢ (𝜑 → (𝐻 = (𝐹 ∘𝑓 𝑅𝐺) ↔ ∀𝑥 ∈ 𝐴 (𝐻‘𝑥) = (𝐵𝑅𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 ∀wral 2455 Vcvv 2739 ↦ cmpt 4066 Fn wfn 5213 ‘cfv 5218 (class class class)co 5877 ∘𝑓 cof 6083 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-setind 4538 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-of 6085 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |