ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  offveqb GIF version

Theorem offveqb 5912
Description: Equivalent expressions for equality with a function operation. (Contributed by NM, 9-Oct-2014.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
Hypotheses
Ref Expression
offveq.1 (𝜑𝐴𝑉)
offveq.2 (𝜑𝐹 Fn 𝐴)
offveq.3 (𝜑𝐺 Fn 𝐴)
offveq.4 (𝜑𝐻 Fn 𝐴)
offveq.5 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
offveq.6 ((𝜑𝑥𝐴) → (𝐺𝑥) = 𝐶)
Assertion
Ref Expression
offveqb (𝜑 → (𝐻 = (𝐹𝑓 𝑅𝐺) ↔ ∀𝑥𝐴 (𝐻𝑥) = (𝐵𝑅𝐶)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝑥,𝐻   𝜑,𝑥   𝑥,𝑅
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem offveqb
StepHypRef Expression
1 offveq.4 . . . 4 (𝜑𝐻 Fn 𝐴)
2 dffn5im 5385 . . . 4 (𝐻 Fn 𝐴𝐻 = (𝑥𝐴 ↦ (𝐻𝑥)))
31, 2syl 14 . . 3 (𝜑𝐻 = (𝑥𝐴 ↦ (𝐻𝑥)))
4 offveq.2 . . . 4 (𝜑𝐹 Fn 𝐴)
5 offveq.3 . . . 4 (𝜑𝐺 Fn 𝐴)
6 offveq.1 . . . 4 (𝜑𝐴𝑉)
7 inidm 3224 . . . 4 (𝐴𝐴) = 𝐴
8 offveq.5 . . . 4 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
9 offveq.6 . . . 4 ((𝜑𝑥𝐴) → (𝐺𝑥) = 𝐶)
104, 5, 6, 6, 7, 8, 9offval 5901 . . 3 (𝜑 → (𝐹𝑓 𝑅𝐺) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)))
113, 10eqeq12d 2109 . 2 (𝜑 → (𝐻 = (𝐹𝑓 𝑅𝐺) ↔ (𝑥𝐴 ↦ (𝐻𝑥)) = (𝑥𝐴 ↦ (𝐵𝑅𝐶))))
12 funfvex 5357 . . . . . 6 ((Fun 𝐻𝑥 ∈ dom 𝐻) → (𝐻𝑥) ∈ V)
1312funfni 5148 . . . . 5 ((𝐻 Fn 𝐴𝑥𝐴) → (𝐻𝑥) ∈ V)
141, 13sylan 278 . . . 4 ((𝜑𝑥𝐴) → (𝐻𝑥) ∈ V)
1514ralrimiva 2458 . . 3 (𝜑 → ∀𝑥𝐴 (𝐻𝑥) ∈ V)
16 mpteqb 5429 . . 3 (∀𝑥𝐴 (𝐻𝑥) ∈ V → ((𝑥𝐴 ↦ (𝐻𝑥)) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)) ↔ ∀𝑥𝐴 (𝐻𝑥) = (𝐵𝑅𝐶)))
1715, 16syl 14 . 2 (𝜑 → ((𝑥𝐴 ↦ (𝐻𝑥)) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)) ↔ ∀𝑥𝐴 (𝐻𝑥) = (𝐵𝑅𝐶)))
1811, 17bitrd 187 1 (𝜑 → (𝐻 = (𝐹𝑓 𝑅𝐺) ↔ ∀𝑥𝐴 (𝐻𝑥) = (𝐵𝑅𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1296  wcel 1445  wral 2370  Vcvv 2633  cmpt 3921   Fn wfn 5044  cfv 5049  (class class class)co 5690  𝑓 cof 5892
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-coll 3975  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-setind 4381
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-ral 2375  df-rex 2376  df-reu 2377  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-id 4144  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-of 5894
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator