ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovtposg GIF version

Theorem ovtposg 5956
Description: The transposition swaps the arguments in a two-argument function. When 𝐹 is a matrix, which is to say a function from ( 1 ... m ) × ( 1 ... n ) to the reals or some ring, tpos 𝐹 is the transposition of 𝐹, which is where the name comes from. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
ovtposg ((𝐴𝑉𝐵𝑊) → (𝐴tpos 𝐹𝐵) = (𝐵𝐹𝐴))

Proof of Theorem ovtposg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 vex 2615 . . . . 5 𝑦 ∈ V
2 brtposg 5951 . . . . 5 ((𝐴𝑉𝐵𝑊𝑦 ∈ V) → (⟨𝐴, 𝐵⟩tpos 𝐹𝑦 ↔ ⟨𝐵, 𝐴𝐹𝑦))
31, 2mp3an3 1258 . . . 4 ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩tpos 𝐹𝑦 ↔ ⟨𝐵, 𝐴𝐹𝑦))
43iotabidv 4955 . . 3 ((𝐴𝑉𝐵𝑊) → (℩𝑦𝐴, 𝐵⟩tpos 𝐹𝑦) = (℩𝑦𝐵, 𝐴𝐹𝑦))
5 df-fv 4977 . . 3 (tpos 𝐹‘⟨𝐴, 𝐵⟩) = (℩𝑦𝐴, 𝐵⟩tpos 𝐹𝑦)
6 df-fv 4977 . . 3 (𝐹‘⟨𝐵, 𝐴⟩) = (℩𝑦𝐵, 𝐴𝐹𝑦)
74, 5, 63eqtr4g 2140 . 2 ((𝐴𝑉𝐵𝑊) → (tpos 𝐹‘⟨𝐴, 𝐵⟩) = (𝐹‘⟨𝐵, 𝐴⟩))
8 df-ov 5594 . 2 (𝐴tpos 𝐹𝐵) = (tpos 𝐹‘⟨𝐴, 𝐵⟩)
9 df-ov 5594 . 2 (𝐵𝐹𝐴) = (𝐹‘⟨𝐵, 𝐴⟩)
107, 8, 93eqtr4g 2140 1 ((𝐴𝑉𝐵𝑊) → (𝐴tpos 𝐹𝐵) = (𝐵𝐹𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1285  wcel 1434  Vcvv 2612  cop 3425   class class class wbr 3811  cio 4932  cfv 4969  (class class class)co 5591  tpos ctpos 5941
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 4000  ax-un 4224
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-rab 2362  df-v 2614  df-sbc 2827  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-br 3812  df-opab 3866  df-mpt 3867  df-id 4084  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-rn 4412  df-res 4413  df-ima 4414  df-iota 4934  df-fun 4971  df-fn 4972  df-fv 4977  df-ov 5594  df-tpos 5942
This theorem is referenced by:  tpossym  5973
  Copyright terms: Public domain W3C validator