ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovtposg GIF version

Theorem ovtposg 6368
Description: The transposition swaps the arguments in a two-argument function. When 𝐹 is a matrix, which is to say a function from ( 1 ... m ) × ( 1 ... n ) to the reals or some ring, tpos 𝐹 is the transposition of 𝐹, which is where the name comes from. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
ovtposg ((𝐴𝑉𝐵𝑊) → (𝐴tpos 𝐹𝐵) = (𝐵𝐹𝐴))

Proof of Theorem ovtposg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 vex 2779 . . . . 5 𝑦 ∈ V
2 brtposg 6363 . . . . 5 ((𝐴𝑉𝐵𝑊𝑦 ∈ V) → (⟨𝐴, 𝐵⟩tpos 𝐹𝑦 ↔ ⟨𝐵, 𝐴𝐹𝑦))
31, 2mp3an3 1339 . . . 4 ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩tpos 𝐹𝑦 ↔ ⟨𝐵, 𝐴𝐹𝑦))
43iotabidv 5273 . . 3 ((𝐴𝑉𝐵𝑊) → (℩𝑦𝐴, 𝐵⟩tpos 𝐹𝑦) = (℩𝑦𝐵, 𝐴𝐹𝑦))
5 df-fv 5298 . . 3 (tpos 𝐹‘⟨𝐴, 𝐵⟩) = (℩𝑦𝐴, 𝐵⟩tpos 𝐹𝑦)
6 df-fv 5298 . . 3 (𝐹‘⟨𝐵, 𝐴⟩) = (℩𝑦𝐵, 𝐴𝐹𝑦)
74, 5, 63eqtr4g 2265 . 2 ((𝐴𝑉𝐵𝑊) → (tpos 𝐹‘⟨𝐴, 𝐵⟩) = (𝐹‘⟨𝐵, 𝐴⟩))
8 df-ov 5970 . 2 (𝐴tpos 𝐹𝐵) = (tpos 𝐹‘⟨𝐴, 𝐵⟩)
9 df-ov 5970 . 2 (𝐵𝐹𝐴) = (𝐹‘⟨𝐵, 𝐴⟩)
107, 8, 93eqtr4g 2265 1 ((𝐴𝑉𝐵𝑊) → (𝐴tpos 𝐹𝐵) = (𝐵𝐹𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2178  Vcvv 2776  cop 3646   class class class wbr 4059  cio 5249  cfv 5290  (class class class)co 5967  tpos ctpos 6353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-ov 5970  df-tpos 6354
This theorem is referenced by:  tpossym  6385  opprmulg  13948
  Copyright terms: Public domain W3C validator