| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ovtposg | GIF version | ||
| Description: The transposition swaps the arguments in a two-argument function. When 𝐹 is a matrix, which is to say a function from ( 1 ... m ) × ( 1 ... n ) to the reals or some ring, tpos 𝐹 is the transposition of 𝐹, which is where the name comes from. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| Ref | Expression |
|---|---|
| ovtposg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴tpos 𝐹𝐵) = (𝐵𝐹𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2766 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 2 | brtposg 6312 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑦 ∈ V) → (〈𝐴, 𝐵〉tpos 𝐹𝑦 ↔ 〈𝐵, 𝐴〉𝐹𝑦)) | |
| 3 | 1, 2 | mp3an3 1337 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉tpos 𝐹𝑦 ↔ 〈𝐵, 𝐴〉𝐹𝑦)) |
| 4 | 3 | iotabidv 5241 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (℩𝑦〈𝐴, 𝐵〉tpos 𝐹𝑦) = (℩𝑦〈𝐵, 𝐴〉𝐹𝑦)) |
| 5 | df-fv 5266 | . . 3 ⊢ (tpos 𝐹‘〈𝐴, 𝐵〉) = (℩𝑦〈𝐴, 𝐵〉tpos 𝐹𝑦) | |
| 6 | df-fv 5266 | . . 3 ⊢ (𝐹‘〈𝐵, 𝐴〉) = (℩𝑦〈𝐵, 𝐴〉𝐹𝑦) | |
| 7 | 4, 5, 6 | 3eqtr4g 2254 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (tpos 𝐹‘〈𝐴, 𝐵〉) = (𝐹‘〈𝐵, 𝐴〉)) |
| 8 | df-ov 5925 | . 2 ⊢ (𝐴tpos 𝐹𝐵) = (tpos 𝐹‘〈𝐴, 𝐵〉) | |
| 9 | df-ov 5925 | . 2 ⊢ (𝐵𝐹𝐴) = (𝐹‘〈𝐵, 𝐴〉) | |
| 10 | 7, 8, 9 | 3eqtr4g 2254 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴tpos 𝐹𝐵) = (𝐵𝐹𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 Vcvv 2763 〈cop 3625 class class class wbr 4033 ℩cio 5217 ‘cfv 5258 (class class class)co 5922 tpos ctpos 6302 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-ov 5925 df-tpos 6303 |
| This theorem is referenced by: tpossym 6334 opprmulg 13627 |
| Copyright terms: Public domain | W3C validator |