ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovtposg GIF version

Theorem ovtposg 6207
Description: The transposition swaps the arguments in a two-argument function. When 𝐹 is a matrix, which is to say a function from ( 1 ... m ) × ( 1 ... n ) to the reals or some ring, tpos 𝐹 is the transposition of 𝐹, which is where the name comes from. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
ovtposg ((𝐴𝑉𝐵𝑊) → (𝐴tpos 𝐹𝐵) = (𝐵𝐹𝐴))

Proof of Theorem ovtposg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 vex 2715 . . . . 5 𝑦 ∈ V
2 brtposg 6202 . . . . 5 ((𝐴𝑉𝐵𝑊𝑦 ∈ V) → (⟨𝐴, 𝐵⟩tpos 𝐹𝑦 ↔ ⟨𝐵, 𝐴𝐹𝑦))
31, 2mp3an3 1308 . . . 4 ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩tpos 𝐹𝑦 ↔ ⟨𝐵, 𝐴𝐹𝑦))
43iotabidv 5157 . . 3 ((𝐴𝑉𝐵𝑊) → (℩𝑦𝐴, 𝐵⟩tpos 𝐹𝑦) = (℩𝑦𝐵, 𝐴𝐹𝑦))
5 df-fv 5179 . . 3 (tpos 𝐹‘⟨𝐴, 𝐵⟩) = (℩𝑦𝐴, 𝐵⟩tpos 𝐹𝑦)
6 df-fv 5179 . . 3 (𝐹‘⟨𝐵, 𝐴⟩) = (℩𝑦𝐵, 𝐴𝐹𝑦)
74, 5, 63eqtr4g 2215 . 2 ((𝐴𝑉𝐵𝑊) → (tpos 𝐹‘⟨𝐴, 𝐵⟩) = (𝐹‘⟨𝐵, 𝐴⟩))
8 df-ov 5828 . 2 (𝐴tpos 𝐹𝐵) = (tpos 𝐹‘⟨𝐴, 𝐵⟩)
9 df-ov 5828 . 2 (𝐵𝐹𝐴) = (𝐹‘⟨𝐵, 𝐴⟩)
107, 8, 93eqtr4g 2215 1 ((𝐴𝑉𝐵𝑊) → (𝐴tpos 𝐹𝐵) = (𝐵𝐹𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1335  wcel 2128  Vcvv 2712  cop 3563   class class class wbr 3966  cio 5134  cfv 5171  (class class class)co 5825  tpos ctpos 6192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4083  ax-pow 4136  ax-pr 4170  ax-un 4394
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-sbc 2938  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3774  df-br 3967  df-opab 4027  df-mpt 4028  df-id 4254  df-xp 4593  df-rel 4594  df-cnv 4595  df-co 4596  df-dm 4597  df-rn 4598  df-res 4599  df-ima 4600  df-iota 5136  df-fun 5173  df-fn 5174  df-fv 5179  df-ov 5828  df-tpos 6193
This theorem is referenced by:  tpossym  6224
  Copyright terms: Public domain W3C validator