| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opprmulg | Unicode version | ||
| Description: Value of the multiplication operation of an opposite ring. Hypotheses eliminated by a suggestion of Stefan O'Rear, 30-Aug-2015. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Aug-2015.) |
| Ref | Expression |
|---|---|
| opprval.1 |
|
| opprval.2 |
|
| opprval.3 |
|
| opprmulfval.4 |
|
| Ref | Expression |
|---|---|
| opprmulg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprval.1 |
. . . . 5
| |
| 2 | opprval.2 |
. . . . 5
| |
| 3 | opprval.3 |
. . . . 5
| |
| 4 | opprmulfval.4 |
. . . . 5
| |
| 5 | 1, 2, 3, 4 | opprmulfvalg 13636 |
. . . 4
|
| 6 | 5 | oveqd 5940 |
. . 3
|
| 7 | 6 | 3ad2ant1 1020 |
. 2
|
| 8 | ovtposg 6318 |
. . 3
| |
| 9 | 8 | 3adant1 1017 |
. 2
|
| 10 | 7, 9 | eqtrd 2229 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7972 ax-resscn 7973 ax-1re 7975 ax-addrcl 7978 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-ov 5926 df-oprab 5927 df-mpo 5928 df-tpos 6304 df-inn 8993 df-2 9051 df-3 9052 df-ndx 12691 df-slot 12692 df-sets 12695 df-mulr 12779 df-oppr 13634 |
| This theorem is referenced by: crngoppr 13638 opprrng 13643 opprrngbg 13644 opprring 13645 opprringbg 13646 oppr1g 13648 mulgass3 13651 opprunitd 13676 unitmulcl 13679 unitgrp 13682 unitpropdg 13714 rhmopp 13742 opprsubrngg 13777 subrguss 13802 subrgunit 13805 opprdomnbg 13840 isridlrng 14048 isridl 14070 2idlcpblrng 14089 |
| Copyright terms: Public domain | W3C validator |