ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprmulg Unicode version

Theorem opprmulg 13637
Description: Value of the multiplication operation of an opposite ring. Hypotheses eliminated by a suggestion of Stefan O'Rear, 30-Aug-2015. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Aug-2015.)
Hypotheses
Ref Expression
opprval.1  |-  B  =  ( Base `  R
)
opprval.2  |-  .x.  =  ( .r `  R )
opprval.3  |-  O  =  (oppr
`  R )
opprmulfval.4  |-  .xb  =  ( .r `  O )
Assertion
Ref Expression
opprmulg  |-  ( ( R  e.  V  /\  X  e.  W  /\  Y  e.  U )  ->  ( X  .xb  Y
)  =  ( Y 
.x.  X ) )

Proof of Theorem opprmulg
StepHypRef Expression
1 opprval.1 . . . . 5  |-  B  =  ( Base `  R
)
2 opprval.2 . . . . 5  |-  .x.  =  ( .r `  R )
3 opprval.3 . . . . 5  |-  O  =  (oppr
`  R )
4 opprmulfval.4 . . . . 5  |-  .xb  =  ( .r `  O )
51, 2, 3, 4opprmulfvalg 13636 . . . 4  |-  ( R  e.  V  ->  .xb  = tpos  .x.  )
65oveqd 5940 . . 3  |-  ( R  e.  V  ->  ( X  .xb  Y )  =  ( Xtpos  .x.  Y
) )
763ad2ant1 1020 . 2  |-  ( ( R  e.  V  /\  X  e.  W  /\  Y  e.  U )  ->  ( X  .xb  Y
)  =  ( Xtpos 
.x.  Y ) )
8 ovtposg 6318 . . 3  |-  ( ( X  e.  W  /\  Y  e.  U )  ->  ( Xtpos  .x.  Y
)  =  ( Y 
.x.  X ) )
983adant1 1017 . 2  |-  ( ( R  e.  V  /\  X  e.  W  /\  Y  e.  U )  ->  ( Xtpos  .x.  Y
)  =  ( Y 
.x.  X ) )
107, 9eqtrd 2229 1  |-  ( ( R  e.  V  /\  X  e.  W  /\  Y  e.  U )  ->  ( X  .xb  Y
)  =  ( Y 
.x.  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 980    = wceq 1364    e. wcel 2167   ` cfv 5259  (class class class)co 5923  tpos ctpos 6303   Basecbs 12688   .rcmulr 12766  opprcoppr 13633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7972  ax-resscn 7973  ax-1re 7975  ax-addrcl 7978
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-ov 5926  df-oprab 5927  df-mpo 5928  df-tpos 6304  df-inn 8993  df-2 9051  df-3 9052  df-ndx 12691  df-slot 12692  df-sets 12695  df-mulr 12779  df-oppr 13634
This theorem is referenced by:  crngoppr  13638  opprrng  13643  opprrngbg  13644  opprring  13645  opprringbg  13646  oppr1g  13648  mulgass3  13651  opprunitd  13676  unitmulcl  13679  unitgrp  13682  unitpropdg  13714  rhmopp  13742  opprsubrngg  13777  subrguss  13802  subrgunit  13805  opprdomnbg  13840  isridlrng  14048  isridl  14070  2idlcpblrng  14089
  Copyright terms: Public domain W3C validator