ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plybss Unicode version

Theorem plybss 14879
Description: Reverse closure of the parameter  S of the polynomial set function. (Contributed by Mario Carneiro, 22-Jul-2014.)
Assertion
Ref Expression
plybss  |-  ( F  e.  (Poly `  S
)  ->  S  C_  CC )

Proof of Theorem plybss
Dummy variables  a  f  n  x  k  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ply 14876 . . 3  |- Poly  =  ( x  e.  ~P CC  |->  { f  |  E. n  e.  NN0  E. a  e.  ( ( x  u. 
{ 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) } )
21mptrcl 5640 . 2  |-  ( F  e.  (Poly `  S
)  ->  S  e.  ~P CC )
32elpwid 3612 1  |-  ( F  e.  (Poly `  S
)  ->  S  C_  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   {cab 2179   E.wrex 2473    u. cun 3151    C_ wss 3153   ~Pcpw 3601   {csn 3618    |-> cmpt 4090   ` cfv 5254  (class class class)co 5918    ^m cmap 6702   CCcc 7870   0cc0 7872    x. cmul 7877   NN0cn0 9240   ...cfz 10074   ^cexp 10609   sum_csu 11496  Polycply 14874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fv 5262  df-ply 14876
This theorem is referenced by:  elply  14880  plyf  14883  plyssc  14885  plyaddlem  14895  plymullem  14896  plysub  14899
  Copyright terms: Public domain W3C validator