ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plyval Unicode version

Theorem plyval 15371
Description: Value of the polynomial set function. (Contributed by Mario Carneiro, 17-Jul-2014.)
Assertion
Ref Expression
plyval  |-  ( S 
C_  CC  ->  (Poly `  S )  =  {
f  |  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) } )
Distinct variable groups:    S, a, f, n    k, a, z, f, n
Allowed substitution hints:    S( z, k)

Proof of Theorem plyval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-ply 15369 . 2  |- Poly  =  ( x  e.  ~P CC  |->  { f  |  E. n  e.  NN0  E. a  e.  ( ( x  u. 
{ 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) } )
2 uneq1 3331 . . . . . 6  |-  ( x  =  S  ->  (
x  u.  { 0 } )  =  ( S  u.  { 0 } ) )
32oveq1d 5989 . . . . 5  |-  ( x  =  S  ->  (
( x  u.  {
0 } )  ^m  NN0 )  =  ( ( S  u.  { 0 } )  ^m  NN0 ) )
43rexeqdv 2715 . . . 4  |-  ( x  =  S  ->  ( E. a  e.  (
( x  u.  {
0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) )  <->  E. a  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )
54rexbidv 2511 . . 3  |-  ( x  =  S  ->  ( E. n  e.  NN0  E. a  e.  ( ( x  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) )  <->  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )
65abbidv 2327 . 2  |-  ( x  =  S  ->  { f  |  E. n  e. 
NN0  E. a  e.  ( ( x  u.  {
0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) }  =  {
f  |  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) } )
7 cnex 8091 . . . 4  |-  CC  e.  _V
87elpw2 4220 . . 3  |-  ( S  e.  ~P CC  <->  S  C_  CC )
98biimpri 133 . 2  |-  ( S 
C_  CC  ->  S  e. 
~P CC )
10 nn0ex 9343 . . 3  |-  NN0  e.  _V
11 fnmap 6772 . . . . . 6  |-  ^m  Fn  ( _V  X.  _V )
127ssex 4200 . . . . . . 7  |-  ( S 
C_  CC  ->  S  e. 
_V )
13 c0ex 8108 . . . . . . . 8  |-  0  e.  _V
1413snex 4248 . . . . . . 7  |-  { 0 }  e.  _V
15 unexg 4511 . . . . . . 7  |-  ( ( S  e.  _V  /\  { 0 }  e.  _V )  ->  ( S  u.  { 0 } )  e. 
_V )
1612, 14, 15sylancl 413 . . . . . 6  |-  ( S 
C_  CC  ->  ( S  u.  { 0 } )  e.  _V )
1710a1i 9 . . . . . 6  |-  ( S 
C_  CC  ->  NN0  e.  _V )
18 fnovex 6007 . . . . . 6  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  ( S  u.  { 0 } )  e.  _V  /\ 
NN0  e.  _V )  ->  ( ( S  u.  { 0 } )  ^m  NN0 )  e.  _V )
1911, 16, 17, 18mp3an2i 1357 . . . . 5  |-  ( S 
C_  CC  ->  ( ( S  u.  { 0 } )  ^m  NN0 )  e.  _V )
20 abrexexg 6233 . . . . 5  |-  ( ( ( S  u.  {
0 } )  ^m  NN0 )  e.  _V  ->  { f  |  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) }  e.  _V )
2119, 20syl 14 . . . 4  |-  ( S 
C_  CC  ->  { f  |  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) }  e.  _V )
2221ralrimivw 2584 . . 3  |-  ( S 
C_  CC  ->  A. n  e.  NN0  { f  |  E. a  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) }  e.  _V )
23 abrexex2g 6235 . . 3  |-  ( ( NN0  e.  _V  /\  A. n  e.  NN0  { f  |  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) }  e.  _V )  ->  { f  |  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) }  e.  _V )
2410, 22, 23sylancr 414 . 2  |-  ( S 
C_  CC  ->  { f  |  E. n  e. 
NN0  E. a  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) }  e.  _V )
251, 6, 9, 24fvmptd3 5701 1  |-  ( S 
C_  CC  ->  (Poly `  S )  =  {
f  |  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1375    e. wcel 2180   {cab 2195   A.wral 2488   E.wrex 2489   _Vcvv 2779    u. cun 3175    C_ wss 3177   ~Pcpw 3629   {csn 3646    |-> cmpt 4124    X. cxp 4694    Fn wfn 5289   ` cfv 5294  (class class class)co 5974    ^m cmap 6765   CCcc 7965   0cc0 7967    x. cmul 7972   NN0cn0 9337   ...cfz 10172   ^cexp 10727   sum_csu 11830  Polycply 15367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-i2m1 8072
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-map 6767  df-inn 9079  df-n0 9338  df-ply 15369
This theorem is referenced by:  elply  15373  plyss  15377
  Copyright terms: Public domain W3C validator