ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plyval Unicode version

Theorem plyval 15052
Description: Value of the polynomial set function. (Contributed by Mario Carneiro, 17-Jul-2014.)
Assertion
Ref Expression
plyval  |-  ( S 
C_  CC  ->  (Poly `  S )  =  {
f  |  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) } )
Distinct variable groups:    S, a, f, n    k, a, z, f, n
Allowed substitution hints:    S( z, k)

Proof of Theorem plyval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-ply 15050 . 2  |- Poly  =  ( x  e.  ~P CC  |->  { f  |  E. n  e.  NN0  E. a  e.  ( ( x  u. 
{ 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) } )
2 uneq1 3311 . . . . . 6  |-  ( x  =  S  ->  (
x  u.  { 0 } )  =  ( S  u.  { 0 } ) )
32oveq1d 5940 . . . . 5  |-  ( x  =  S  ->  (
( x  u.  {
0 } )  ^m  NN0 )  =  ( ( S  u.  { 0 } )  ^m  NN0 ) )
43rexeqdv 2700 . . . 4  |-  ( x  =  S  ->  ( E. a  e.  (
( x  u.  {
0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) )  <->  E. a  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )
54rexbidv 2498 . . 3  |-  ( x  =  S  ->  ( E. n  e.  NN0  E. a  e.  ( ( x  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) )  <->  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )
65abbidv 2314 . 2  |-  ( x  =  S  ->  { f  |  E. n  e. 
NN0  E. a  e.  ( ( x  u.  {
0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) }  =  {
f  |  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) } )
7 cnex 8020 . . . 4  |-  CC  e.  _V
87elpw2 4191 . . 3  |-  ( S  e.  ~P CC  <->  S  C_  CC )
98biimpri 133 . 2  |-  ( S 
C_  CC  ->  S  e. 
~P CC )
10 nn0ex 9272 . . 3  |-  NN0  e.  _V
11 fnmap 6723 . . . . . 6  |-  ^m  Fn  ( _V  X.  _V )
127ssex 4171 . . . . . . 7  |-  ( S 
C_  CC  ->  S  e. 
_V )
13 c0ex 8037 . . . . . . . 8  |-  0  e.  _V
1413snex 4219 . . . . . . 7  |-  { 0 }  e.  _V
15 unexg 4479 . . . . . . 7  |-  ( ( S  e.  _V  /\  { 0 }  e.  _V )  ->  ( S  u.  { 0 } )  e. 
_V )
1612, 14, 15sylancl 413 . . . . . 6  |-  ( S 
C_  CC  ->  ( S  u.  { 0 } )  e.  _V )
1710a1i 9 . . . . . 6  |-  ( S 
C_  CC  ->  NN0  e.  _V )
18 fnovex 5958 . . . . . 6  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  ( S  u.  { 0 } )  e.  _V  /\ 
NN0  e.  _V )  ->  ( ( S  u.  { 0 } )  ^m  NN0 )  e.  _V )
1911, 16, 17, 18mp3an2i 1353 . . . . 5  |-  ( S 
C_  CC  ->  ( ( S  u.  { 0 } )  ^m  NN0 )  e.  _V )
20 abrexexg 6184 . . . . 5  |-  ( ( ( S  u.  {
0 } )  ^m  NN0 )  e.  _V  ->  { f  |  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) }  e.  _V )
2119, 20syl 14 . . . 4  |-  ( S 
C_  CC  ->  { f  |  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) }  e.  _V )
2221ralrimivw 2571 . . 3  |-  ( S 
C_  CC  ->  A. n  e.  NN0  { f  |  E. a  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) }  e.  _V )
23 abrexex2g 6186 . . 3  |-  ( ( NN0  e.  _V  /\  A. n  e.  NN0  { f  |  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) }  e.  _V )  ->  { f  |  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) }  e.  _V )
2410, 22, 23sylancr 414 . 2  |-  ( S 
C_  CC  ->  { f  |  E. n  e. 
NN0  E. a  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) }  e.  _V )
251, 6, 9, 24fvmptd3 5658 1  |-  ( S 
C_  CC  ->  (Poly `  S )  =  {
f  |  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   {cab 2182   A.wral 2475   E.wrex 2476   _Vcvv 2763    u. cun 3155    C_ wss 3157   ~Pcpw 3606   {csn 3623    |-> cmpt 4095    X. cxp 4662    Fn wfn 5254   ` cfv 5259  (class class class)co 5925    ^m cmap 6716   CCcc 7894   0cc0 7896    x. cmul 7901   NN0cn0 9266   ...cfz 10100   ^cexp 10647   sum_csu 11535  Polycply 15048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-i2m1 8001
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-map 6718  df-inn 9008  df-n0 9267  df-ply 15050
This theorem is referenced by:  elply  15054  plyss  15058
  Copyright terms: Public domain W3C validator