ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plyval Unicode version

Theorem plyval 14878
Description: Value of the polynomial set function. (Contributed by Mario Carneiro, 17-Jul-2014.)
Assertion
Ref Expression
plyval  |-  ( S 
C_  CC  ->  (Poly `  S )  =  {
f  |  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) } )
Distinct variable groups:    S, a, f, n    k, a, z, f, n
Allowed substitution hints:    S( z, k)

Proof of Theorem plyval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-ply 14876 . 2  |- Poly  =  ( x  e.  ~P CC  |->  { f  |  E. n  e.  NN0  E. a  e.  ( ( x  u. 
{ 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) } )
2 uneq1 3306 . . . . . 6  |-  ( x  =  S  ->  (
x  u.  { 0 } )  =  ( S  u.  { 0 } ) )
32oveq1d 5933 . . . . 5  |-  ( x  =  S  ->  (
( x  u.  {
0 } )  ^m  NN0 )  =  ( ( S  u.  { 0 } )  ^m  NN0 ) )
43rexeqdv 2697 . . . 4  |-  ( x  =  S  ->  ( E. a  e.  (
( x  u.  {
0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) )  <->  E. a  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )
54rexbidv 2495 . . 3  |-  ( x  =  S  ->  ( E. n  e.  NN0  E. a  e.  ( ( x  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) )  <->  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )
65abbidv 2311 . 2  |-  ( x  =  S  ->  { f  |  E. n  e. 
NN0  E. a  e.  ( ( x  u.  {
0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) }  =  {
f  |  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) } )
7 cnex 7996 . . . 4  |-  CC  e.  _V
87elpw2 4186 . . 3  |-  ( S  e.  ~P CC  <->  S  C_  CC )
98biimpri 133 . 2  |-  ( S 
C_  CC  ->  S  e. 
~P CC )
10 nn0ex 9246 . . 3  |-  NN0  e.  _V
11 fnmap 6709 . . . . . 6  |-  ^m  Fn  ( _V  X.  _V )
127ssex 4166 . . . . . . 7  |-  ( S 
C_  CC  ->  S  e. 
_V )
13 c0ex 8013 . . . . . . . 8  |-  0  e.  _V
1413snex 4214 . . . . . . 7  |-  { 0 }  e.  _V
15 unexg 4474 . . . . . . 7  |-  ( ( S  e.  _V  /\  { 0 }  e.  _V )  ->  ( S  u.  { 0 } )  e. 
_V )
1612, 14, 15sylancl 413 . . . . . 6  |-  ( S 
C_  CC  ->  ( S  u.  { 0 } )  e.  _V )
1710a1i 9 . . . . . 6  |-  ( S 
C_  CC  ->  NN0  e.  _V )
18 fnovex 5951 . . . . . 6  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  ( S  u.  { 0 } )  e.  _V  /\ 
NN0  e.  _V )  ->  ( ( S  u.  { 0 } )  ^m  NN0 )  e.  _V )
1911, 16, 17, 18mp3an2i 1353 . . . . 5  |-  ( S 
C_  CC  ->  ( ( S  u.  { 0 } )  ^m  NN0 )  e.  _V )
20 abrexexg 6170 . . . . 5  |-  ( ( ( S  u.  {
0 } )  ^m  NN0 )  e.  _V  ->  { f  |  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) }  e.  _V )
2119, 20syl 14 . . . 4  |-  ( S 
C_  CC  ->  { f  |  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) }  e.  _V )
2221ralrimivw 2568 . . 3  |-  ( S 
C_  CC  ->  A. n  e.  NN0  { f  |  E. a  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) }  e.  _V )
23 abrexex2g 6172 . . 3  |-  ( ( NN0  e.  _V  /\  A. n  e.  NN0  { f  |  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) }  e.  _V )  ->  { f  |  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) }  e.  _V )
2410, 22, 23sylancr 414 . 2  |-  ( S 
C_  CC  ->  { f  |  E. n  e. 
NN0  E. a  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) }  e.  _V )
251, 6, 9, 24fvmptd3 5651 1  |-  ( S 
C_  CC  ->  (Poly `  S )  =  {
f  |  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   {cab 2179   A.wral 2472   E.wrex 2473   _Vcvv 2760    u. cun 3151    C_ wss 3153   ~Pcpw 3601   {csn 3618    |-> cmpt 4090    X. cxp 4657    Fn wfn 5249   ` cfv 5254  (class class class)co 5918    ^m cmap 6702   CCcc 7870   0cc0 7872    x. cmul 7877   NN0cn0 9240   ...cfz 10074   ^cexp 10609   sum_csu 11496  Polycply 14874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-i2m1 7977
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-map 6704  df-inn 8983  df-n0 9241  df-ply 14876
This theorem is referenced by:  elply  14880  plyss  14884
  Copyright terms: Public domain W3C validator