| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > plyval | Unicode version | ||
| Description: Value of the polynomial set function. (Contributed by Mario Carneiro, 17-Jul-2014.) |
| Ref | Expression |
|---|---|
| plyval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ply 15412 |
. 2
| |
| 2 | uneq1 3351 |
. . . . . 6
| |
| 3 | 2 | oveq1d 6022 |
. . . . 5
|
| 4 | 3 | rexeqdv 2735 |
. . . 4
|
| 5 | 4 | rexbidv 2531 |
. . 3
|
| 6 | 5 | abbidv 2347 |
. 2
|
| 7 | cnex 8131 |
. . . 4
| |
| 8 | 7 | elpw2 4241 |
. . 3
|
| 9 | 8 | biimpri 133 |
. 2
|
| 10 | nn0ex 9383 |
. . 3
| |
| 11 | fnmap 6810 |
. . . . . 6
| |
| 12 | 7 | ssex 4221 |
. . . . . . 7
|
| 13 | c0ex 8148 |
. . . . . . . 8
| |
| 14 | 13 | snex 4269 |
. . . . . . 7
|
| 15 | unexg 4534 |
. . . . . . 7
| |
| 16 | 12, 14, 15 | sylancl 413 |
. . . . . 6
|
| 17 | 10 | a1i 9 |
. . . . . 6
|
| 18 | fnovex 6040 |
. . . . . 6
| |
| 19 | 11, 16, 17, 18 | mp3an2i 1376 |
. . . . 5
|
| 20 | abrexexg 6269 |
. . . . 5
| |
| 21 | 19, 20 | syl 14 |
. . . 4
|
| 22 | 21 | ralrimivw 2604 |
. . 3
|
| 23 | abrexex2g 6271 |
. . 3
| |
| 24 | 10, 22, 23 | sylancr 414 |
. 2
|
| 25 | 1, 6, 9, 24 | fvmptd3 5730 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-i2m1 8112 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-map 6805 df-inn 9119 df-n0 9378 df-ply 15412 |
| This theorem is referenced by: elply 15416 plyss 15420 |
| Copyright terms: Public domain | W3C validator |