ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plyval Unicode version

Theorem plyval 15248
Description: Value of the polynomial set function. (Contributed by Mario Carneiro, 17-Jul-2014.)
Assertion
Ref Expression
plyval  |-  ( S 
C_  CC  ->  (Poly `  S )  =  {
f  |  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) } )
Distinct variable groups:    S, a, f, n    k, a, z, f, n
Allowed substitution hints:    S( z, k)

Proof of Theorem plyval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-ply 15246 . 2  |- Poly  =  ( x  e.  ~P CC  |->  { f  |  E. n  e.  NN0  E. a  e.  ( ( x  u. 
{ 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) } )
2 uneq1 3321 . . . . . 6  |-  ( x  =  S  ->  (
x  u.  { 0 } )  =  ( S  u.  { 0 } ) )
32oveq1d 5966 . . . . 5  |-  ( x  =  S  ->  (
( x  u.  {
0 } )  ^m  NN0 )  =  ( ( S  u.  { 0 } )  ^m  NN0 ) )
43rexeqdv 2710 . . . 4  |-  ( x  =  S  ->  ( E. a  e.  (
( x  u.  {
0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) )  <->  E. a  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )
54rexbidv 2508 . . 3  |-  ( x  =  S  ->  ( E. n  e.  NN0  E. a  e.  ( ( x  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) )  <->  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )
65abbidv 2324 . 2  |-  ( x  =  S  ->  { f  |  E. n  e. 
NN0  E. a  e.  ( ( x  u.  {
0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) }  =  {
f  |  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) } )
7 cnex 8056 . . . 4  |-  CC  e.  _V
87elpw2 4205 . . 3  |-  ( S  e.  ~P CC  <->  S  C_  CC )
98biimpri 133 . 2  |-  ( S 
C_  CC  ->  S  e. 
~P CC )
10 nn0ex 9308 . . 3  |-  NN0  e.  _V
11 fnmap 6749 . . . . . 6  |-  ^m  Fn  ( _V  X.  _V )
127ssex 4185 . . . . . . 7  |-  ( S 
C_  CC  ->  S  e. 
_V )
13 c0ex 8073 . . . . . . . 8  |-  0  e.  _V
1413snex 4233 . . . . . . 7  |-  { 0 }  e.  _V
15 unexg 4494 . . . . . . 7  |-  ( ( S  e.  _V  /\  { 0 }  e.  _V )  ->  ( S  u.  { 0 } )  e. 
_V )
1612, 14, 15sylancl 413 . . . . . 6  |-  ( S 
C_  CC  ->  ( S  u.  { 0 } )  e.  _V )
1710a1i 9 . . . . . 6  |-  ( S 
C_  CC  ->  NN0  e.  _V )
18 fnovex 5984 . . . . . 6  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  ( S  u.  { 0 } )  e.  _V  /\ 
NN0  e.  _V )  ->  ( ( S  u.  { 0 } )  ^m  NN0 )  e.  _V )
1911, 16, 17, 18mp3an2i 1355 . . . . 5  |-  ( S 
C_  CC  ->  ( ( S  u.  { 0 } )  ^m  NN0 )  e.  _V )
20 abrexexg 6210 . . . . 5  |-  ( ( ( S  u.  {
0 } )  ^m  NN0 )  e.  _V  ->  { f  |  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) }  e.  _V )
2119, 20syl 14 . . . 4  |-  ( S 
C_  CC  ->  { f  |  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) }  e.  _V )
2221ralrimivw 2581 . . 3  |-  ( S 
C_  CC  ->  A. n  e.  NN0  { f  |  E. a  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) }  e.  _V )
23 abrexex2g 6212 . . 3  |-  ( ( NN0  e.  _V  /\  A. n  e.  NN0  { f  |  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) }  e.  _V )  ->  { f  |  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) }  e.  _V )
2410, 22, 23sylancr 414 . 2  |-  ( S 
C_  CC  ->  { f  |  E. n  e. 
NN0  E. a  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) }  e.  _V )
251, 6, 9, 24fvmptd3 5680 1  |-  ( S 
C_  CC  ->  (Poly `  S )  =  {
f  |  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2177   {cab 2192   A.wral 2485   E.wrex 2486   _Vcvv 2773    u. cun 3165    C_ wss 3167   ~Pcpw 3617   {csn 3634    |-> cmpt 4109    X. cxp 4677    Fn wfn 5271   ` cfv 5276  (class class class)co 5951    ^m cmap 6742   CCcc 7930   0cc0 7932    x. cmul 7937   NN0cn0 9302   ...cfz 10137   ^cexp 10690   sum_csu 11708  Polycply 15244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-i2m1 8037
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-map 6744  df-inn 9044  df-n0 9303  df-ply 15246
This theorem is referenced by:  elply  15250  plyss  15254
  Copyright terms: Public domain W3C validator