HomeHome Intuitionistic Logic Explorer
Theorem List (p. 153 of 165)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 15201-15300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcntoptop 15201 The topology of the complex numbers is a topology. (Contributed by Jim Kingdon, 6-Jun-2023.)
 |-  J  =  ( MetOpen `  ( abs  o.  -  )
 )   =>    |-  J  e.  Top
 
Theoremcnbl0 15202 Two ways to write the open ball centered at zero. (Contributed by Mario Carneiro, 8-Sep-2015.)
 |-  D  =  ( abs 
 o.  -  )   =>    |-  ( R  e.  RR* 
 ->  ( `' abs " (
 0 [,) R ) )  =  ( 0 (
 ball `  D ) R ) )
 
Theoremcnblcld 15203* Two ways to write the closed ball centered at zero. (Contributed by Mario Carneiro, 8-Sep-2015.)
 |-  D  =  ( abs 
 o.  -  )   =>    |-  ( R  e.  RR* 
 ->  ( `' abs " (
 0 [,] R ) )  =  { x  e. 
 CC  |  ( 0 D x )  <_  R } )
 
Theoremcnfldms 15204 The complex number field is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015.)
 |-fld  e.  MetSp
 
Theoremcnfldxms 15205 The complex number field is a topological space. (Contributed by Mario Carneiro, 28-Aug-2015.)
 |-fld  e.  *MetSp
 
Theoremcnfldtps 15206 The complex number field is a topological space. (Contributed by Mario Carneiro, 28-Aug-2015.)
 |-fld  e.  TopSp
 
Theoremcnfldtopn 15207 The topology of the complex numbers. (Contributed by Mario Carneiro, 28-Aug-2015.)
 |-  J  =  ( TopOpen ` fld )   =>    |-  J  =  ( MetOpen `  ( abs  o. 
 -  ) )
 
Theoremcnfldtopon 15208 The topology of the complex numbers is a topology. (Contributed by Mario Carneiro, 2-Sep-2015.)
 |-  J  =  ( TopOpen ` fld )   =>    |-  J  e.  (TopOn `  CC )
 
Theoremcnfldtop 15209 The topology of the complex numbers is a topology. (Contributed by Mario Carneiro, 2-Sep-2015.)
 |-  J  =  ( TopOpen ` fld )   =>    |-  J  e.  Top
 
Theoremunicntopcntop 15210 The underlying set of the standard topology on the complex numbers is the set of complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by Jim Kingdon, 12-Dec-2023.)
 |- 
 CC  =  U. ( MetOpen `  ( abs  o.  -  ) )
 
Theoremunicntop 15211 The underlying set of the standard topology on the complex numbers is the set of complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |- 
 CC  =  U. ( TopOpen ` fld )
 
Theoremcnopncntop 15212 The set of complex numbers is open with respect to the standard topology on complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by Jim Kingdon, 12-Dec-2023.)
 |- 
 CC  e.  ( MetOpen `  ( abs  o.  -  )
 )
 
Theoremcnopn 15213 The set of complex numbers is open with respect to the standard topology on complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |- 
 CC  e.  ( TopOpen ` fld )
 
Theoremreopnap 15214* The real numbers apart from a given real number form an open set. (Contributed by Jim Kingdon, 13-Dec-2023.)
 |-  ( A  e.  RR  ->  { w  e.  RR  |  w #  A }  e.  ( topGen `  ran  (,) )
 )
 
Theoremremetdval 15215 Value of the distance function of the metric space of real numbers. (Contributed by NM, 16-May-2007.)
 |-  D  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )   =>    |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A D B )  =  ( abs `  ( A  -  B ) ) )
 
Theoremremet 15216 The absolute value metric determines a metric space on the reals. (Contributed by NM, 10-Feb-2007.)
 |-  D  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )   =>    |-  D  e.  ( Met `  RR )
 
Theoremrexmet 15217 The absolute value metric is an extended metric. (Contributed by Mario Carneiro, 28-Aug-2015.)
 |-  D  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )   =>    |-  D  e.  ( *Met `  RR )
 
Theorembl2ioo 15218 A ball in terms of an open interval of reals. (Contributed by NM, 18-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
 |-  D  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )   =>    |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A (
 ball `  D ) B )  =  ( ( A  -  B ) (,) ( A  +  B ) ) )
 
Theoremioo2bl 15219 An open interval of reals in terms of a ball. (Contributed by NM, 18-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
 |-  D  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )   =>    |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A (,) B )  =  ( ( ( A  +  B )  /  2 ) (
 ball `  D ) ( ( B  -  A )  /  2 ) ) )
 
Theoremioo2blex 15220 An open interval of reals in terms of a ball. (Contributed by Mario Carneiro, 14-Nov-2013.)
 |-  D  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )   =>    |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A (,) B )  e.  ran  ( ball `  D ) )
 
Theoremblssioo 15221 The balls of the standard real metric space are included in the open real intervals. (Contributed by NM, 8-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
 |-  D  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )   =>    |- 
 ran  ( ball `  D )  C_  ran  (,)
 
Theoremtgioo 15222 The topology generated by open intervals of reals is the same as the open sets of the standard metric space on the reals. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
 |-  D  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )   &    |-  J  =  (
 MetOpen `  D )   =>    |-  ( topGen `  ran  (,) )  =  J
 
Theoremtgqioo 15223 The topology generated by open intervals of reals with rational endpoints is the same as the open sets of the standard metric space on the reals. In particular, this proves that the standard topology on the reals is second-countable. (Contributed by Mario Carneiro, 17-Jun-2014.)
 |-  Q  =  ( topGen `  ( (,) " ( QQ 
 X.  QQ ) ) )   =>    |-  ( topGen `  ran  (,) )  =  Q
 
Theoremresubmet 15224 The subspace topology induced by a subset of the reals. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Aug-2014.)
 |-  R  =  ( topGen `  ran  (,) )   &    |-  J  =  (
 MetOpen `  ( ( abs 
 o.  -  )  |`  ( A  X.  A ) ) )   =>    |-  ( A  C_  RR  ->  J  =  ( Rt  A ) )
 
Theoremtgioo2cntop 15225 The standard topology on the reals is a subspace of the complex metric topology. (Contributed by Mario Carneiro, 13-Aug-2014.) (Revised by Jim Kingdon, 6-Aug-2023.)
 |-  J  =  ( MetOpen `  ( abs  o.  -  )
 )   =>    |-  ( topGen `  ran  (,) )  =  ( Jt  RR )
 
Theoremrerestcntop 15226 The subspace topology induced by a subset of the reals. (Contributed by Mario Carneiro, 13-Aug-2014.) (Revised by Jim Kingdon, 6-Aug-2023.)
 |-  J  =  ( MetOpen `  ( abs  o.  -  )
 )   &    |-  R  =  ( topGen `  ran  (,) )   =>    |-  ( A  C_  RR  ->  ( Jt  A )  =  ( Rt  A ) )
 
Theoremtgioo2 15227 The standard topology on the reals is a subspace of the complex metric topology. (Contributed by Mario Carneiro, 13-Aug-2014.)
 |-  J  =  ( TopOpen ` fld )   =>    |-  ( topGen `
  ran  (,) )  =  ( Jt  RR )
 
Theoremrerest 15228 The subspace topology induced by a subset of the reals. (Contributed by Mario Carneiro, 13-Aug-2014.)
 |-  J  =  ( TopOpen ` fld )   &    |-  R  =  ( topGen `  ran  (,) )   =>    |-  ( A  C_  RR  ->  ( Jt  A )  =  ( Rt  A ) )
 
Theoremaddcncntoplem 15229* Lemma for addcncntop 15230, subcncntop 15231, and mulcncntop 15232. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Jim Kingdon, 22-Oct-2023.)
 |-  J  =  ( MetOpen `  ( abs  o.  -  )
 )   &    |- 
 .+  : ( CC 
 X.  CC ) --> CC   &    |-  (
 ( a  e.  RR+  /\  b  e.  CC  /\  c  e.  CC )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e. 
 CC  ( ( ( abs `  ( u  -  b ) )  < 
 y  /\  ( abs `  ( v  -  c
 ) )  <  z
 )  ->  ( abs `  ( ( u  .+  v )  -  (
 b  .+  c )
 ) )  <  a
 ) )   =>    |- 
 .+  e.  ( ( J  tX  J )  Cn  J )
 
Theoremaddcncntop 15230 Complex number addition is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by NM, 30-Jul-2007.) (Proof shortened by Mario Carneiro, 5-May-2014.)
 |-  J  =  ( MetOpen `  ( abs  o.  -  )
 )   =>    |- 
 +  e.  ( ( J  tX  J )  Cn  J )
 
Theoremsubcncntop 15231 Complex number subtraction is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by NM, 4-Aug-2007.) (Proof shortened by Mario Carneiro, 5-May-2014.)
 |-  J  =  ( MetOpen `  ( abs  o.  -  )
 )   =>    |- 
 -  e.  ( ( J  tX  J )  Cn  J )
 
Theoremmulcncntop 15232 Complex number multiplication is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by NM, 30-Jul-2007.) (Proof shortened by Mario Carneiro, 5-May-2014.)
 |-  J  =  ( MetOpen `  ( abs  o.  -  )
 )   =>    |- 
 x.  e.  ( ( J  tX  J )  Cn  J )
 
Theoremdivcnap 15233* Complex number division is a continuous function, when the second argument is apart from zero. (Contributed by Mario Carneiro, 12-Aug-2014.) (Revised by Jim Kingdon, 25-Oct-2023.)
 |-  J  =  ( MetOpen `  ( abs  o.  -  )
 )   &    |-  K  =  ( Jt  { x  e.  CC  |  x #  0 } )   =>    |-  ( y  e.  CC ,  z  e.  { x  e.  CC  |  x #  0 }  |->  ( y  /  z ) )  e.  ( ( J  tX  K )  Cn  J )
 
Theoremmpomulcn 15234* Complex number multiplication is a continuous function. (Contributed by GG, 16-Mar-2025.)
 |-  J  =  ( TopOpen ` fld )   =>    |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )  e.  ( ( J  tX  J )  Cn  J )
 
Theoremfsumcncntop 15235* A finite sum of functions to complex numbers from a common topological space is continuous. The class expression for  B normally contains free variables  k and  x to index it. (Contributed by NM, 8-Aug-2007.) (Revised by Mario Carneiro, 23-Aug-2014.)
 |-  K  =  ( MetOpen `  ( abs  o.  -  )
 )   &    |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  ( x  e.  X  |->  B )  e.  ( J  Cn  K ) )   =>    |-  ( ph  ->  ( x  e.  X  |->  sum_ k  e.  A  B )  e.  ( J  Cn  K ) )
 
Theoremfsumcn 15236* A finite sum of functions to complex numbers from a common topological space is continuous. The class expression for  B normally contains free variables  k and  x to index it. (Contributed by NM, 8-Aug-2007.) (Revised by Mario Carneiro, 23-Aug-2014.)
 |-  K  =  ( TopOpen ` fld )   &    |-  ( ph  ->  J  e.  (TopOn `  X ) )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A )  ->  ( x  e.  X  |->  B )  e.  ( J  Cn  K ) )   =>    |-  ( ph  ->  ( x  e.  X  |->  sum_ k  e.  A  B )  e.  ( J  Cn  K ) )
 
Theoremexpcn 15237* The power function on complex numbers, for fixed exponent  N, is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) Avoid ax-mulf 8118. (Revised by GG, 16-Mar-2025.)
 |-  J  =  ( TopOpen ` fld )   =>    |-  ( N  e.  NN0  ->  ( x  e.  CC  |->  ( x ^ N ) )  e.  ( J  Cn  J ) )
 
9.2.7  Topological definitions using the reals
 
Syntaxccncf 15238 Extend class notation to include the operation which returns a class of continuous complex functions.
 class  -cn->
 
Definitiondf-cncf 15239* Define the operation whose value is a class of continuous complex functions. (Contributed by Paul Chapman, 11-Oct-2007.)
 |- 
 -cn->  =  ( a  e. 
 ~P CC ,  b  e.  ~P CC  |->  { f  e.  ( b  ^m  a
 )  |  A. x  e.  a  A. e  e.  RR+  E. d  e.  RR+  A. y  e.  a  ( ( abs `  ( x  -  y ) )  <  d  ->  ( abs `  ( ( f `
  x )  -  ( f `  y
 ) ) )  < 
 e ) } )
 
Theoremcncfval 15240* The value of the continuous complex function operation is the set of continuous functions from  A to  B. (Contributed by Paul Chapman, 11-Oct-2007.) (Revised by Mario Carneiro, 9-Nov-2013.)
 |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( A -cn-> B )  =  { f  e.  ( B  ^m  A )  |  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w ) )  <  z  ->  ( abs `  ( ( f `
  x )  -  ( f `  w ) ) )  < 
 y ) } )
 
Theoremelcncf 15241* Membership in the set of continuous complex functions from  A to  B. (Contributed by Paul Chapman, 11-Oct-2007.) (Revised by Mario Carneiro, 9-Nov-2013.)
 |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  ( F : A
 --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w ) )  <  z  ->  ( abs `  ( ( F `
  x )  -  ( F `  w ) ) )  <  y
 ) ) ) )
 
Theoremelcncf2 15242* Version of elcncf 15241 with arguments commuted. (Contributed by Mario Carneiro, 28-Apr-2014.)
 |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  ( F : A
 --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x ) )  <  z  ->  ( abs `  ( ( F `
  w )  -  ( F `  x ) ) )  <  y
 ) ) ) )
 
Theoremcncfrss 15243 Reverse closure of the continuous function predicate. (Contributed by Mario Carneiro, 25-Aug-2014.)
 |-  ( F  e.  ( A -cn-> B )  ->  A  C_  CC )
 
Theoremcncfrss2 15244 Reverse closure of the continuous function predicate. (Contributed by Mario Carneiro, 25-Aug-2014.)
 |-  ( F  e.  ( A -cn-> B )  ->  B  C_  CC )
 
Theoremcncff 15245 A continuous complex function's domain and codomain. (Contributed by Paul Chapman, 17-Jan-2008.) (Revised by Mario Carneiro, 25-Aug-2014.)
 |-  ( F  e.  ( A -cn-> B )  ->  F : A --> B )
 
Theoremcncfi 15246* Defining property of a continuous function. (Contributed by Mario Carneiro, 30-Apr-2014.) (Revised by Mario Carneiro, 25-Aug-2014.)
 |-  ( ( F  e.  ( A -cn-> B )  /\  C  e.  A  /\  R  e.  RR+ )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  C ) )  <  z  ->  ( abs `  ( ( F `  w )  -  ( F `  C ) ) )  <  R ) )
 
Theoremelcncf1di 15247* Membership in the set of continuous complex functions from  A to  B. (Contributed by Paul Chapman, 26-Nov-2007.)
 |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  RR+ )  ->  Z  e.  RR+ ) )   &    |-  ( ph  ->  ( ( ( x  e.  A  /\  w  e.  A )  /\  y  e.  RR+ )  ->  ( ( abs `  ( x  -  w ) )  <  Z  ->  ( abs `  ( ( F `
  x )  -  ( F `  w ) ) )  <  y
 ) ) )   =>    |-  ( ph  ->  ( ( A  C_  CC  /\  B  C_  CC )  ->  F  e.  ( A
 -cn-> B ) ) )
 
Theoremelcncf1ii 15248* Membership in the set of continuous complex functions from  A to  B. (Contributed by Paul Chapman, 26-Nov-2007.)
 |-  F : A --> B   &    |-  (
 ( x  e.  A  /\  y  e.  RR+ )  ->  Z  e.  RR+ )   &    |-  (
 ( ( x  e.  A  /\  w  e.  A )  /\  y  e.  RR+ )  ->  (
 ( abs `  ( x  -  w ) )  <  Z  ->  ( abs `  (
 ( F `  x )  -  ( F `  w ) ) )  <  y ) )   =>    |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  F  e.  ( A -cn-> B ) )
 
Theoremrescncf 15249 A continuous complex function restricted to a subset is continuous. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 25-Aug-2014.)
 |-  ( C  C_  A  ->  ( F  e.  ( A -cn-> B )  ->  ( F  |`  C )  e.  ( C -cn-> B ) ) )
 
Theoremcncfcdm 15250 Change the codomain of a continuous complex function. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 1-May-2015.)
 |-  ( ( C  C_  CC  /\  F  e.  ( A -cn-> B ) ) 
 ->  ( F  e.  ( A -cn-> C )  <->  F : A --> C ) )
 
Theoremcncfss 15251 The set of continuous functions is expanded when the codomain is expanded. (Contributed by Mario Carneiro, 30-Aug-2014.)
 |-  ( ( B  C_  C  /\  C  C_  CC )  ->  ( A -cn-> B )  C_  ( A -cn-> C ) )
 
Theoremclimcncf 15252 Image of a limit under a continuous map. (Contributed by Mario Carneiro, 7-Apr-2015.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  e.  ( A -cn-> B ) )   &    |-  ( ph  ->  G : Z
 --> A )   &    |-  ( ph  ->  G  ~~>  D )   &    |-  ( ph  ->  D  e.  A )   =>    |-  ( ph  ->  ( F  o.  G )  ~~>  ( F `  D ) )
 
Theoremabscncf 15253 Absolute value is continuous. (Contributed by Paul Chapman, 21-Oct-2007.) (Revised by Mario Carneiro, 28-Apr-2014.)
 |- 
 abs  e.  ( CC -cn-> RR )
 
Theoremrecncf 15254 Real part is continuous. (Contributed by Paul Chapman, 21-Oct-2007.) (Revised by Mario Carneiro, 28-Apr-2014.)
 |-  Re  e.  ( CC
 -cn-> RR )
 
Theoremimcncf 15255 Imaginary part is continuous. (Contributed by Paul Chapman, 21-Oct-2007.) (Revised by Mario Carneiro, 28-Apr-2014.)
 |-  Im  e.  ( CC
 -cn-> RR )
 
Theoremcjcncf 15256 Complex conjugate is continuous. (Contributed by Paul Chapman, 21-Oct-2007.) (Revised by Mario Carneiro, 28-Apr-2014.)
 |-  *  e.  ( CC
 -cn-> CC )
 
Theoremmulc1cncf 15257* Multiplication by a constant is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
 |-  F  =  ( x  e.  CC  |->  ( A  x.  x ) )   =>    |-  ( A  e.  CC  ->  F  e.  ( CC
 -cn-> CC ) )
 
Theoremdivccncfap 15258* Division by a constant is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Jim Kingdon, 9-Jan-2023.)
 |-  F  =  ( x  e.  CC  |->  ( x 
 /  A ) )   =>    |-  ( ( A  e.  CC  /\  A #  0 ) 
 ->  F  e.  ( CC
 -cn-> CC ) )
 
Theoremcncfco 15259 The composition of two continuous maps on complex numbers is also continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 25-Aug-2014.)
 |-  ( ph  ->  F  e.  ( A -cn-> B ) )   &    |-  ( ph  ->  G  e.  ( B -cn-> C ) )   =>    |-  ( ph  ->  ( G  o.  F )  e.  ( A -cn-> C ) )
 
Theoremcncfmet 15260 Relate complex function continuity to metric space continuity. (Contributed by Paul Chapman, 26-Nov-2007.) (Revised by Mario Carneiro, 7-Sep-2015.)
 |-  C  =  ( ( abs  o.  -  )  |`  ( A  X.  A ) )   &    |-  D  =  ( ( abs  o.  -  )  |`  ( B  X.  B ) )   &    |-  J  =  ( MetOpen `  C )   &    |-  K  =  ( MetOpen `  D )   =>    |-  (
 ( A  C_  CC  /\  B  C_  CC )  ->  ( A -cn-> B )  =  ( J  Cn  K ) )
 
Theoremcncfcncntop 15261 Relate complex function continuity to topological continuity. (Contributed by Mario Carneiro, 17-Feb-2015.)
 |-  J  =  ( MetOpen `  ( abs  o.  -  )
 )   &    |-  K  =  ( Jt  A )   &    |-  L  =  ( Jt  B )   =>    |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( A -cn-> B )  =  ( K  Cn  L ) )
 
Theoremcncfcn1cntop 15262 Relate complex function continuity to topological continuity. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 7-Sep-2015.) (Revised by Jim Kingdon, 16-Jun-2023.)
 |-  J  =  ( MetOpen `  ( abs  o.  -  )
 )   =>    |-  ( CC -cn-> CC )  =  ( J  Cn  J )
 
Theoremcncfcn1 15263 Relate complex function continuity to topological continuity. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 7-Sep-2015.)
 |-  J  =  ( TopOpen ` fld )   =>    |-  ( CC -cn-> CC )  =  ( J  Cn  J )
 
Theoremcncfmptc 15264* A constant function is a continuous function on  CC. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 7-Sep-2015.)
 |-  ( ( A  e.  T  /\  S  C_  CC  /\  T  C_  CC )  ->  ( x  e.  S  |->  A )  e.  ( S -cn-> T ) )
 
Theoremcncfmptid 15265* The identity function is a continuous function on  CC. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 17-May-2016.)
 |-  ( ( S  C_  T  /\  T  C_  CC )  ->  ( x  e.  S  |->  x )  e.  ( S -cn-> T ) )
 
Theoremcncfmpt1f 15266* Composition of continuous functions.  -cn-> analogue of cnmpt11f 14952. (Contributed by Mario Carneiro, 3-Sep-2014.)
 |-  ( ph  ->  F  e.  ( CC -cn-> CC )
 )   &    |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( X -cn-> CC ) )   =>    |-  ( ph  ->  ( x  e.  X  |->  ( F `
  A ) )  e.  ( X -cn-> CC ) )
 
Theoremcncfmpt2fcntop 15267* Composition of continuous functions.  -cn-> analogue of cnmpt12f 14954. (Contributed by Mario Carneiro, 3-Sep-2014.)
 |-  J  =  ( MetOpen `  ( abs  o.  -  )
 )   &    |-  ( ph  ->  F  e.  ( ( J  tX  J )  Cn  J ) )   &    |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( X
 -cn-> CC ) )   &    |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( X -cn-> CC )
 )   =>    |-  ( ph  ->  ( x  e.  X  |->  ( A F B ) )  e.  ( X -cn-> CC ) )
 
Theoremaddccncf 15268* Adding a constant is a continuous function. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  F  =  ( x  e.  CC  |->  ( x  +  A ) )   =>    |-  ( A  e.  CC  ->  F  e.  ( CC
 -cn-> CC ) )
 
Theoremidcncf 15269 The identity function is a continuous function on  CC. (Contributed by Jeff Madsen, 11-Jun-2010.) (Moved into main set.mm as cncfmptid 15265 and may be deleted by mathbox owner, JM. --MC 12-Sep-2015.) (Revised by Mario Carneiro, 12-Sep-2015.)
 |-  F  =  ( x  e.  CC  |->  x )   =>    |-  F  e.  ( CC -cn-> CC )
 
Theoremsub1cncf 15270* Subtracting a constant is a continuous function. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
 |-  F  =  ( x  e.  CC  |->  ( x  -  A ) )   =>    |-  ( A  e.  CC  ->  F  e.  ( CC
 -cn-> CC ) )
 
Theoremsub2cncf 15271* Subtraction from a constant is a continuous function. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
 |-  F  =  ( x  e.  CC  |->  ( A  -  x ) )   =>    |-  ( A  e.  CC  ->  F  e.  ( CC
 -cn-> CC ) )
 
Theoremcdivcncfap 15272* Division with a constant numerator is continuous. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 26-May-2023.)
 |-  F  =  ( x  e.  { y  e. 
 CC  |  y #  0 }  |->  ( A  /  x ) )   =>    |-  ( A  e.  CC  ->  F  e.  ( { y  e.  CC  |  y #  0 } -cn->
 CC ) )
 
Theoremnegcncf 15273* The negative function is continuous. (Contributed by Mario Carneiro, 30-Dec-2016.)
 |-  F  =  ( x  e.  A  |->  -u x )   =>    |-  ( A  C_  CC  ->  F  e.  ( A
 -cn-> CC ) )
 
Theoremnegfcncf 15274* The negative of a continuous complex function is continuous. (Contributed by Paul Chapman, 21-Jan-2008.) (Revised by Mario Carneiro, 25-Aug-2014.)
 |-  G  =  ( x  e.  A  |->  -u ( F `  x ) )   =>    |-  ( F  e.  ( A -cn-> CC )  ->  G  e.  ( A -cn-> CC )
 )
 
Theoremmulcncflem 15275* Lemma for mulcncf 15276. (Contributed by Jim Kingdon, 29-May-2023.)
 |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( X -cn-> CC ) )   &    |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( X
 -cn-> CC ) )   &    |-  ( ph  ->  V  e.  X )   &    |-  ( ph  ->  E  e.  RR+ )   &    |-  ( ph  ->  F  e.  RR+ )   &    |-  ( ph  ->  G  e.  RR+ )   &    |-  ( ph  ->  S  e.  RR+ )   &    |-  ( ph  ->  T  e.  RR+ )   &    |-  ( ph  ->  A. u  e.  X  ( ( abs `  ( u  -  V ) )  <  S  ->  ( abs `  ( ( ( x  e.  X  |->  A ) `  u )  -  ( ( x  e.  X  |->  A ) `
  V ) ) )  <  F ) )   &    |-  ( ph  ->  A. u  e.  X  ( ( abs `  ( u  -  V ) )  <  T  ->  ( abs `  ( ( ( x  e.  X  |->  B ) `  u )  -  ( ( x  e.  X  |->  B ) `
  V ) ) )  <  G ) )   &    |-  ( ph  ->  A. u  e.  X  ( ( ( abs `  ( [_ u  /  x ]_ A  -  [_ V  /  x ]_ A ) )  <  F  /\  ( abs `  ( [_ u  /  x ]_ B  -  [_ V  /  x ]_ B ) )  <  G )  ->  ( abs `  ( ( [_ u  /  x ]_ A  x.  [_ u  /  x ]_ B )  -  ( [_ V  /  x ]_ A  x.  [_ V  /  x ]_ B ) ) )  <  E ) )   =>    |-  ( ph  ->  E. d  e.  RR+  A. u  e.  X  ( ( abs `  ( u  -  V ) )  <  d  ->  ( abs `  ( ( ( x  e.  X  |->  ( A  x.  B ) ) `  u )  -  ( ( x  e.  X  |->  ( A  x.  B ) ) `
  V ) ) )  <  E ) )
 
Theoremmulcncf 15276* The multiplication of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
 |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( X -cn-> CC ) )   &    |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( X
 -cn-> CC ) )   =>    |-  ( ph  ->  ( x  e.  X  |->  ( A  x.  B ) )  e.  ( X
 -cn-> CC ) )
 
Theoremexpcncf 15277* The power function on complex numbers, for fixed exponent N, is continuous. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
 |-  ( N  e.  NN0  ->  ( x  e.  CC  |->  ( x ^ N ) )  e.  ( CC
 -cn-> CC ) )
 
Theoremcnrehmeocntop 15278* The canonical bijection from  ( RR  X.  RR ) to  CC described in cnref1o 9842 is in fact a homeomorphism of the usual topologies on these sets. (It is also an isometry, if  ( RR  X.  RR ) is metrized with the l<SUP>2</SUP> norm.) (Contributed by Mario Carneiro, 25-Aug-2014.)
 |-  F  =  ( x  e.  RR ,  y  e.  RR  |->  ( x  +  ( _i  x.  y
 ) ) )   &    |-  J  =  ( topGen `  ran  (,) )   &    |-  K  =  ( MetOpen `  ( abs  o. 
 -  ) )   =>    |-  F  e.  (
 ( J  tX  J ) Homeo K )
 
Theoremcnopnap 15279* The complex numbers apart from a given complex number form an open set. (Contributed by Jim Kingdon, 14-Dec-2023.)
 |-  ( A  e.  CC  ->  { w  e.  CC  |  w #  A }  e.  ( MetOpen `  ( abs  o. 
 -  ) ) )
 
PART 10  BASIC REAL AND COMPLEX ANALYSIS
 
10.1  Continuity
 
Theoremaddcncf 15280* The addition of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( X -cn-> CC ) )   &    |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( X
 -cn-> CC ) )   =>    |-  ( ph  ->  ( x  e.  X  |->  ( A  +  B ) )  e.  ( X
 -cn-> CC ) )
 
Theoremsubcncf 15281* The subtraction of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( X -cn-> CC ) )   &    |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( X
 -cn-> CC ) )   =>    |-  ( ph  ->  ( x  e.  X  |->  ( A  -  B ) )  e.  ( X
 -cn-> CC ) )
 
Theoremdivcncfap 15282* The quotient of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( X -cn-> CC ) )   &    |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( X
 -cn-> { y  e.  CC  |  y #  0 }
 ) )   =>    |-  ( ph  ->  ( x  e.  X  |->  ( A 
 /  B ) )  e.  ( X -cn-> CC ) )
 
Theoremmaxcncf 15283* The maximum of two continuous real functions is continuous. (Contributed by Jim Kingdon, 18-Jul-2025.)
 |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( X -cn-> RR ) )   &    |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( X
 -cn-> RR ) )   =>    |-  ( ph  ->  ( x  e.  X  |->  sup ( { A ,  B } ,  RR ,  <  ) )  e.  ( X -cn-> RR ) )
 
Theoremmincncf 15284* The minimum of two continuous real functions is continuous. (Contributed by Jim Kingdon, 19-Jul-2025.)
 |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( X -cn-> RR ) )   &    |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( X
 -cn-> RR ) )   =>    |-  ( ph  ->  ( x  e.  X  |-> inf ( { A ,  B } ,  RR ,  <  ) )  e.  ( X
 -cn-> RR ) )
 
10.1.1  Dedekind cuts
 
Theoremdedekindeulemuub 15285* Lemma for dedekindeu 15291. Any element of the upper cut is an upper bound for the lower cut. (Contributed by Jim Kingdon, 2-Feb-2024.)
 |-  ( ph  ->  L  C_ 
 RR )   &    |-  ( ph  ->  U 
 C_  RR )   &    |-  ( ph  ->  E. q  e.  RR  q  e.  L )   &    |-  ( ph  ->  E. r  e.  RR  r  e.  U )   &    |-  ( ph  ->  A. q  e.  RR  (
 q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e. 
 RR  ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  RR  A. r  e. 
 RR  ( q  < 
 r  ->  ( q  e.  L  \/  r  e.  U ) ) )   &    |-  ( ph  ->  A  e.  U )   =>    |-  ( ph  ->  A. z  e.  L  z  <  A )
 
Theoremdedekindeulemub 15286* Lemma for dedekindeu 15291. The lower cut has an upper bound. (Contributed by Jim Kingdon, 31-Jan-2024.)
 |-  ( ph  ->  L  C_ 
 RR )   &    |-  ( ph  ->  U 
 C_  RR )   &    |-  ( ph  ->  E. q  e.  RR  q  e.  L )   &    |-  ( ph  ->  E. r  e.  RR  r  e.  U )   &    |-  ( ph  ->  A. q  e.  RR  (
 q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e. 
 RR  ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  RR  A. r  e. 
 RR  ( q  < 
 r  ->  ( q  e.  L  \/  r  e.  U ) ) )   =>    |-  ( ph  ->  E. x  e.  RR  A. y  e.  L  y  <  x )
 
Theoremdedekindeulemloc 15287* Lemma for dedekindeu 15291. The set L is located. (Contributed by Jim Kingdon, 31-Jan-2024.)
 |-  ( ph  ->  L  C_ 
 RR )   &    |-  ( ph  ->  U 
 C_  RR )   &    |-  ( ph  ->  E. q  e.  RR  q  e.  L )   &    |-  ( ph  ->  E. r  e.  RR  r  e.  U )   &    |-  ( ph  ->  A. q  e.  RR  (
 q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e. 
 RR  ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  RR  A. r  e. 
 RR  ( q  < 
 r  ->  ( q  e.  L  \/  r  e.  U ) ) )   =>    |-  ( ph  ->  A. x  e. 
 RR  A. y  e.  RR  ( x  <  y  ->  ( E. z  e.  L  x  <  z  \/  A. z  e.  L  z  <  y ) ) )
 
Theoremdedekindeulemlub 15288* Lemma for dedekindeu 15291. The set L has a least upper bound. (Contributed by Jim Kingdon, 31-Jan-2024.)
 |-  ( ph  ->  L  C_ 
 RR )   &    |-  ( ph  ->  U 
 C_  RR )   &    |-  ( ph  ->  E. q  e.  RR  q  e.  L )   &    |-  ( ph  ->  E. r  e.  RR  r  e.  U )   &    |-  ( ph  ->  A. q  e.  RR  (
 q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e. 
 RR  ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  RR  A. r  e. 
 RR  ( q  < 
 r  ->  ( q  e.  L  \/  r  e.  U ) ) )   =>    |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  L  -.  x  < 
 y  /\  A. y  e. 
 RR  ( y  < 
 x  ->  E. z  e.  L  y  <  z
 ) ) )
 
Theoremdedekindeulemlu 15289* Lemma for dedekindeu 15291. There is a number which separates the lower and upper cuts. (Contributed by Jim Kingdon, 31-Jan-2024.)
 |-  ( ph  ->  L  C_ 
 RR )   &    |-  ( ph  ->  U 
 C_  RR )   &    |-  ( ph  ->  E. q  e.  RR  q  e.  L )   &    |-  ( ph  ->  E. r  e.  RR  r  e.  U )   &    |-  ( ph  ->  A. q  e.  RR  (
 q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e. 
 RR  ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  RR  A. r  e. 
 RR  ( q  < 
 r  ->  ( q  e.  L  \/  r  e.  U ) ) )   =>    |-  ( ph  ->  E. x  e.  RR  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) )
 
Theoremdedekindeulemeu 15290* Lemma for dedekindeu 15291. Part of proving uniqueness. (Contributed by Jim Kingdon, 31-Jan-2024.)
 |-  ( ph  ->  L  C_ 
 RR )   &    |-  ( ph  ->  U 
 C_  RR )   &    |-  ( ph  ->  E. q  e.  RR  q  e.  L )   &    |-  ( ph  ->  E. r  e.  RR  r  e.  U )   &    |-  ( ph  ->  A. q  e.  RR  (
 q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e. 
 RR  ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  RR  A. r  e. 
 RR  ( q  < 
 r  ->  ( q  e.  L  \/  r  e.  U ) ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  (
 A. q  e.  L  q  <  A  /\  A. r  e.  U  A  <  r ) )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  ( A. q  e.  L  q  <  B  /\  A. r  e.  U  B  <  r ) )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  -> F.  )
 
Theoremdedekindeu 15291* A Dedekind cut identifies a unique real number. Similar to df-inp 7649 except that the the Dedekind cut is formed by sets of reals (rather than positive rationals). But in both cases the defining property of a Dedekind cut is that it is inhabited (bounded), rounded, disjoint, and located. (Contributed by Jim Kingdon, 5-Jan-2024.)
 |-  ( ph  ->  L  C_ 
 RR )   &    |-  ( ph  ->  U 
 C_  RR )   &    |-  ( ph  ->  E. q  e.  RR  q  e.  L )   &    |-  ( ph  ->  E. r  e.  RR  r  e.  U )   &    |-  ( ph  ->  A. q  e.  RR  (
 q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e. 
 RR  ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  RR  A. r  e. 
 RR  ( q  < 
 r  ->  ( q  e.  L  \/  r  e.  U ) ) )   =>    |-  ( ph  ->  E! x  e.  RR  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) )
 
Theoremsuplociccreex 15292* An inhabited, bounded-above, located set of reals in a closed interval has a supremum. A similar theorem is axsuploc 8215 but that one is for the entire real line rather than a closed interval. (Contributed by Jim Kingdon, 14-Feb-2024.)
 |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  B  <  C )   &    |-  ( ph  ->  A  C_  ( B [,] C ) )   &    |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  A. x  e.  ( B [,] C ) A. y  e.  ( B [,] C ) ( x  <  y  ->  ( E. z  e.  A  x  <  z  \/  A. z  e.  A  z  <  y ) ) )   =>    |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  < 
 y  /\  A. y  e. 
 RR  ( y  < 
 x  ->  E. z  e.  A  y  <  z
 ) ) )
 
Theoremsuplociccex 15293* An inhabited, bounded-above, located set of reals in a closed interval has a supremum. A similar theorem is axsuploc 8215 but that one is for the entire real line rather than a closed interval. (Contributed by Jim Kingdon, 14-Feb-2024.)
 |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  B  <  C )   &    |-  ( ph  ->  A  C_  ( B [,] C ) )   &    |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  A. x  e.  ( B [,] C ) A. y  e.  ( B [,] C ) ( x  <  y  ->  ( E. z  e.  A  x  <  z  \/  A. z  e.  A  z  <  y ) ) )   =>    |-  ( ph  ->  E. x  e.  ( B [,] C ) ( A. y  e.  A  -.  x  < 
 y  /\  A. y  e.  ( B [,] C ) ( y  < 
 x  ->  E. z  e.  A  y  <  z
 ) ) )
 
Theoremdedekindicclemuub 15294* Lemma for dedekindicc 15301. Any element of the upper cut is an upper bound for the lower cut. (Contributed by Jim Kingdon, 15-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  L  C_  ( A [,] B ) )   &    |-  ( ph  ->  U  C_  ( A [,] B ) )   &    |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )   &    |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  U )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  U ) ) )   &    |-  ( ph  ->  C  e.  U )   =>    |-  ( ph  ->  A. z  e.  L  z  <  C )
 
Theoremdedekindicclemub 15295* Lemma for dedekindicc 15301. The lower cut has an upper bound. (Contributed by Jim Kingdon, 15-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  L  C_  ( A [,] B ) )   &    |-  ( ph  ->  U  C_  ( A [,] B ) )   &    |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )   &    |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  U )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  U ) ) )   =>    |-  ( ph  ->  E. x  e.  ( A [,] B ) A. y  e.  L  y  <  x )
 
Theoremdedekindicclemloc 15296* Lemma for dedekindicc 15301. The set L is located. (Contributed by Jim Kingdon, 15-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  L  C_  ( A [,] B ) )   &    |-  ( ph  ->  U  C_  ( A [,] B ) )   &    |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )   &    |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  U )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  U ) ) )   =>    |-  ( ph  ->  A. x  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( x  <  y  ->  ( E. z  e.  L  x  <  z  \/  A. z  e.  L  z  <  y ) ) )
 
Theoremdedekindicclemlub 15297* Lemma for dedekindicc 15301. The set L has a least upper bound. (Contributed by Jim Kingdon, 15-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  L  C_  ( A [,] B ) )   &    |-  ( ph  ->  U  C_  ( A [,] B ) )   &    |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )   &    |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  U )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  U ) ) )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  ->  E. x  e.  ( A [,] B ) ( A. y  e.  L  -.  x  < 
 y  /\  A. y  e.  ( A [,] B ) ( y  < 
 x  ->  E. z  e.  L  y  <  z
 ) ) )
 
Theoremdedekindicclemlu 15298* Lemma for dedekindicc 15301. There is a number which separates the lower and upper cuts. (Contributed by Jim Kingdon, 15-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  L  C_  ( A [,] B ) )   &    |-  ( ph  ->  U  C_  ( A [,] B ) )   &    |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )   &    |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  U )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  U ) ) )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  ->  E. x  e.  ( A [,] B ) ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) )
 
Theoremdedekindicclemeu 15299* Lemma for dedekindicc 15301. Part of proving uniqueness. (Contributed by Jim Kingdon, 15-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  L  C_  ( A [,] B ) )   &    |-  ( ph  ->  U  C_  ( A [,] B ) )   &    |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )   &    |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  U )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  U ) ) )   &    |-  ( ph  ->  A  <  B )   &    |-  ( ph  ->  C  e.  ( A [,] B ) )   &    |-  ( ph  ->  (
 A. q  e.  L  q  <  C  /\  A. r  e.  U  C  <  r ) )   &    |-  ( ph  ->  D  e.  ( A [,] B ) )   &    |-  ( ph  ->  ( A. q  e.  L  q  <  D  /\  A. r  e.  U  D  <  r
 ) )   &    |-  ( ph  ->  C  <  D )   =>    |-  ( ph  -> F.  )
 
Theoremdedekindicclemicc 15300* Lemma for dedekindicc 15301. Same as dedekindicc 15301, except that we merely show  x to be an element of  ( A [,] B ). Later we will strengthen that to  ( A (,) B
). (Contributed by Jim Kingdon, 5-Jan-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  L  C_  ( A [,] B ) )   &    |-  ( ph  ->  U  C_  ( A [,] B ) )   &    |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )   &    |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  U )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  U ) ) )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  ->  E! x  e.  ( A [,] B ) ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r
 ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16411
  Copyright terms: Public domain < Previous  Next >