HomeHome Intuitionistic Logic Explorer
Theorem List (p. 153 of 162)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 15201-15300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremivthdec 15201* The intermediate value theorem, decreasing case, for a strictly monotonic function. (Contributed by Jim Kingdon, 20-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  U  e.  RR )   &    |-  ( ph  ->  A  <  B )   &    |-  ( ph  ->  ( A [,] B ) 
 C_  D )   &    |-  ( ph  ->  F  e.  ( D -cn-> CC ) )   &    |-  (
 ( ph  /\  x  e.  ( A [,] B ) )  ->  ( F `
  x )  e. 
 RR )   &    |-  ( ph  ->  ( ( F `  B )  <  U  /\  U  <  ( F `  A ) ) )   &    |-  (
 ( ( ph  /\  x  e.  ( A [,] B ) )  /\  ( y  e.  ( A [,] B )  /\  x  < 
 y ) )  ->  ( F `  y )  <  ( F `  x ) )   =>    |-  ( ph  ->  E. c  e.  ( A (,) B ) ( F `  c )  =  U )
 
Theoremivthreinc 15202* Restating the intermediate value theorem. Given a hypothesis stating the intermediate value theorem (in a strong form which is not provable given our axioms alone), provide a conclusion similar to the theorem as stated in the Metamath Proof Explorer (which is also similar to how we state the theorem for a strictly monotonic function at ivthinc 15200). Being able to have a hypothesis stating the intermediate value theorem will be helpful when it comes time to show that it implies a constructive taboo. This version of the theorem requires that the function  F is continuous on the entire real line, not just  ( A [,] B ) which may be an unnecessary condition but which is sufficient for the way we want to use it. (Contributed by Jim Kingdon, 7-Jul-2025.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  U  e.  RR )   &    |-  ( ph  ->  A  <  B )   &    |-  ( ph  ->  F  e.  ( RR -cn-> RR ) )   &    |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `  B ) ) )   &    |-  ( ph  ->  A. f ( f  e.  ( RR -cn-> RR )  ->  A. a  e.  RR  A. b  e.  RR  (
 ( a  <  b  /\  ( f `  a
 )  <  0  /\  0  <  ( f `  b ) )  ->  E. x  e.  RR  ( a  <  x  /\  x  <  b  /\  (
 f `  x )  =  0 ) ) ) )   =>    |-  ( ph  ->  E. c  e.  ( A (,) B ) ( F `  c )  =  U )
 
Theoremhovercncf 15203 The hover function is continuous. By hover function, we mean a a function which starts out as a line of slope one, is constant at zero from zero to one, and then resumes as a slope of one. (Contributed by Jim Kingdon, 20-Jul-2025.)
 |-  F  =  ( x  e.  RR  |->  sup ( {inf ( { x , 
 0 } ,  RR ,  <  ) ,  ( x  -  1 ) } ,  RR ,  <  )
 )   =>    |-  F  e.  ( RR
 -cn-> RR )
 
Theoremhovera 15204* A point at which the hover function is less than a given value. (Contributed by Jim Kingdon, 21-Jul-2025.)
 |-  F  =  ( x  e.  RR  |->  sup ( {inf ( { x , 
 0 } ,  RR ,  <  ) ,  ( x  -  1 ) } ,  RR ,  <  )
 )   =>    |-  ( Z  e.  RR  ->  ( F `  ( Z  -  1 ) )  <  Z )
 
Theoremhoverb 15205* A point at which the hover function is greater than a given value. (Contributed by Jim Kingdon, 21-Jul-2025.)
 |-  F  =  ( x  e.  RR  |->  sup ( {inf ( { x , 
 0 } ,  RR ,  <  ) ,  ( x  -  1 ) } ,  RR ,  <  )
 )   =>    |-  ( Z  e.  RR  ->  Z  <  ( F `
  ( Z  +  2 ) ) )
 
Theoremhoverlt1 15206* The hover function evaluated at a point less than one. (Contributed by Jim Kingdon, 22-Jul-2025.)
 |-  F  =  ( x  e.  RR  |->  sup ( {inf ( { x , 
 0 } ,  RR ,  <  ) ,  ( x  -  1 ) } ,  RR ,  <  )
 )   =>    |-  ( ( C  e.  RR  /\  C  <  1
 )  ->  ( F `  C )  <_  0
 )
 
Theoremhovergt0 15207* The hover function evaluated at a point greater than zero. (Contributed by Jim Kingdon, 22-Jul-2025.)
 |-  F  =  ( x  e.  RR  |->  sup ( {inf ( { x , 
 0 } ,  RR ,  <  ) ,  ( x  -  1 ) } ,  RR ,  <  )
 )   =>    |-  ( ( C  e.  RR  /\  0  <  C )  ->  0  <_  ( F `  C ) )
 
Theoremivthdichlem 15208* Lemma for ivthdich 15210. The result, with a few notational conveniences. (Contributed by Jim Kingdon, 22-Jul-2025.)
 |-  F  =  ( x  e.  RR  |->  sup ( {inf ( { x , 
 0 } ,  RR ,  <  ) ,  ( x  -  1 ) } ,  RR ,  <  )
 )   &    |-  ( ph  ->  Z  e.  RR )   &    |-  ( ph  ->  A. f ( f  e.  ( RR -cn-> RR )  ->  A. a  e.  RR  A. b  e.  RR  (
 ( a  <  b  /\  ( f `  a
 )  <  0  /\  0  <  ( f `  b ) )  ->  E. x  e.  RR  ( a  <  x  /\  x  <  b  /\  (
 f `  x )  =  0 ) ) ) )   =>    |-  ( ph  ->  ( Z  <_  0  \/  0  <_  Z ) )
 
Theoremdich0 15209* Real number dichotomy stated in terms of two real numbers or a real number and zero. (Contributed by Jim Kingdon, 22-Jul-2025.)
 |-  ( A. z  e. 
 RR  ( z  <_ 
 0  \/  0  <_  z )  <->  A. x  e.  RR  A. y  e.  RR  ( x  <_  y  \/  y  <_  x ) )
 
Theoremivthdich 15210* The intermediate value theorem implies real number dichotomy. Because real number dichotomy (also known as analytic LLPO) is a constructive taboo, this means we will be unable to prove the intermediate value theorem as stated here (although versions with additional conditions, such as ivthinc 15200 for strictly monotonic functions, can be proved).

The proof is via a function which we call the hover function and which is also described in Section 5.1 of [Bauer], p. 493. Consider any real number  z. We want to show that  z  <_  0  \/  0  <_  z. Because of hovercncf 15203, hovera 15204, and hoverb 15205, we are able to apply the intermediate value theorem to get a value  c such that the hover function at  c equals  z. By axltwlin 8170,  c  <  1 or  0  <  c, and that leads to  z  <_  0 by hoverlt1 15206 or 
0  <_  z by hovergt0 15207. (Contributed by Jim Kingdon and Mario Carneiro, 22-Jul-2025.)

 |-  ( A. f ( f  e.  ( RR
 -cn-> RR )  ->  A. a  e.  RR  A. b  e. 
 RR  ( ( a  <  b  /\  (
 f `  a )  <  0  /\  0  < 
 ( f `  b
 ) )  ->  E. x  e.  RR  ( a  < 
 x  /\  x  <  b 
 /\  ( f `  x )  =  0
 ) ) )  ->  A. r  e.  RR  A. s  e.  RR  (
 r  <_  s  \/  s  <_  r ) )
 
10.2  Derivatives
 
10.2.1  Real and complex differentiation
 
10.2.1.1  Derivatives of functions of one complex or real variable
 
Syntaxclimc 15211 The limit operator.
 class lim CC
 
Syntaxcdv 15212 The derivative operator.
 class  _D
 
Definitiondf-limced 15213* Define the set of limits of a complex function at a point. Under normal circumstances, this will be a singleton or empty, depending on whether the limit exists. (Contributed by Mario Carneiro, 24-Dec-2016.) (Revised by Jim Kingdon, 3-Jun-2023.)
 |- lim
 CC  =  ( f  e.  ( CC  ^pm  CC ) ,  x  e. 
 CC  |->  { y  e.  CC  |  ( ( f : dom  f --> CC  /\  dom  f  C_  CC )  /\  ( x  e.  CC  /\ 
 A. e  e.  RR+  E. d  e.  RR+  A. z  e.  dom  f ( ( z #  x  /\  ( abs `  ( z  -  x ) )  < 
 d )  ->  ( abs `  ( ( f `
  z )  -  y ) )  < 
 e ) ) ) } )
 
Definitiondf-dvap 15214* Define the derivative operator. This acts on functions to produce a function that is defined where the original function is differentiable, with value the derivative of the function at these points. The set  s here is the ambient topological space under which we are evaluating the continuity of the difference quotient. Although the definition is valid for any subset of  CC and is well-behaved when  s contains no isolated points, we will restrict our attention to the cases  s  =  RR or  s  =  CC for the majority of the development, these corresponding respectively to real and complex differentiation. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 25-Jun-2023.)
 |- 
 _D  =  ( s  e.  ~P CC ,  f  e.  ( CC  ^pm  s )  |->  U_ x  e.  ( ( int `  (
 ( MetOpen `  ( abs  o. 
 -  ) )t  s ) ) `  dom  f
 ) ( { x }  X.  ( ( z  e.  { w  e. 
 dom  f  |  w #  x }  |->  ( ( ( f `  z
 )  -  ( f `
  x ) ) 
 /  ( z  -  x ) ) ) lim
 CC  x ) ) )
 
Theoremlimcrcl 15215 Reverse closure for the limit operator. (Contributed by Mario Carneiro, 28-Dec-2016.)
 |-  ( C  e.  ( F lim CC  B )  ->  ( F : dom  F --> CC  /\  dom  F  C_  CC  /\  B  e.  CC )
 )
 
Theoremlimccl 15216 Closure of the limit operator. (Contributed by Mario Carneiro, 25-Dec-2016.)
 |-  ( F lim CC  B )  C_  CC
 
Theoremellimc3apf 15217* Write the epsilon-delta definition of a limit. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 4-Nov-2023.)
 |-  ( ph  ->  F : A --> CC )   &    |-  ( ph  ->  A  C_  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  F/_ z F   =>    |-  ( ph  ->  ( C  e.  ( F lim
 CC  B )  <->  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B ) )  < 
 y )  ->  ( abs `  ( ( F `
  z )  -  C ) )  < 
 x ) ) ) )
 
Theoremellimc3ap 15218* Write the epsilon-delta definition of a limit. (Contributed by Mario Carneiro, 28-Dec-2016.) Use apartness. (Revised by Jim Kingdon, 3-Jun-2023.)
 |-  ( ph  ->  F : A --> CC )   &    |-  ( ph  ->  A  C_  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( C  e.  ( F lim CC  B )  <->  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B ) )  < 
 y )  ->  ( abs `  ( ( F `
  z )  -  C ) )  < 
 x ) ) ) )
 
Theoremlimcdifap 15219* It suffices to consider functions which are not defined at  B to define the limit of a function. In particular, the value of the original function  F at  B does not affect the limit of  F. (Contributed by Mario Carneiro, 25-Dec-2016.) (Revised by Jim Kingdon, 3-Jun-2023.)
 |-  ( ph  ->  F : A --> CC )   &    |-  ( ph  ->  A  C_  CC )   =>    |-  ( ph  ->  ( F lim CC  B )  =  ( ( F  |`  { x  e.  A  |  x #  B } ) lim CC  B ) )
 
Theoremlimcmpted 15220* Express the limit operator for a function defined by a mapping, via epsilon-delta. (Contributed by Jim Kingdon, 3-Nov-2023.)
 |-  ( ph  ->  A  C_ 
 CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  (
 ( ph  /\  z  e.  A )  ->  D  e.  CC )   =>    |-  ( ph  ->  ( C  e.  ( (
 z  e.  A  |->  D ) lim CC  B )  <-> 
 ( C  e.  CC  /\ 
 A. x  e.  RR+  E. y  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B ) )  <  y ) 
 ->  ( abs `  ( D  -  C ) )  <  x ) ) ) )
 
Theoremlimcimolemlt 15221* Lemma for limcimo 15222. (Contributed by Jim Kingdon, 3-Jul-2023.)
 |-  ( ph  ->  F : A --> CC )   &    |-  ( ph  ->  A  C_  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  B  e.  C )   &    |-  ( ph  ->  B  e.  S )   &    |-  ( ph  ->  C  e.  ( Kt  S ) )   &    |-  ( ph  ->  S  e.  { RR ,  CC } )   &    |-  ( ph  ->  { q  e.  C  |  q #  B }  C_  A )   &    |-  K  =  ( MetOpen `  ( abs  o. 
 -  ) )   &    |-  ( ph  ->  D  e.  RR+ )   &    |-  ( ph  ->  X  e.  ( F lim CC  B ) )   &    |-  ( ph  ->  Y  e.  ( F lim CC  B ) )   &    |-  ( ph  ->  A. z  e.  A  ( ( z #  B  /\  ( abs `  (
 z  -  B ) )  <  D ) 
 ->  ( abs `  (
 ( F `  z
 )  -  X ) )  <  ( ( abs `  ( X  -  Y ) )  / 
 2 ) ) )   &    |-  ( ph  ->  G  e.  RR+ )   &    |-  ( ph  ->  A. w  e.  A  ( ( w #  B  /\  ( abs `  ( w  -  B ) )  <  G )  ->  ( abs `  ( ( F `  w )  -  Y ) )  <  ( ( abs `  ( X  -  Y ) )  / 
 2 ) ) )   =>    |-  ( ph  ->  ( abs `  ( X  -  Y ) )  <  ( abs `  ( X  -  Y ) ) )
 
Theoremlimcimo 15222* Conditions which ensure there is at most one limit value of  F at  B. (Contributed by Mario Carneiro, 25-Dec-2016.) (Revised by Jim Kingdon, 8-Jul-2023.)
 |-  ( ph  ->  F : A --> CC )   &    |-  ( ph  ->  A  C_  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  B  e.  C )   &    |-  ( ph  ->  B  e.  S )   &    |-  ( ph  ->  C  e.  ( Kt  S ) )   &    |-  ( ph  ->  S  e.  { RR ,  CC } )   &    |-  ( ph  ->  { q  e.  C  |  q #  B }  C_  A )   &    |-  K  =  ( MetOpen `  ( abs  o. 
 -  ) )   =>    |-  ( ph  ->  E* x  x  e.  ( F lim CC  B ) )
 
Theoremlimcresi 15223 Any limit of  F is also a limit of the restriction of  F. (Contributed by Mario Carneiro, 28-Dec-2016.)
 |-  ( F lim CC  B )  C_  ( ( F  |`  C ) lim CC  B )
 
Theoremcnplimcim 15224 If a function is continuous at  B, its limit at  B equals the value of the function there. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 14-Jun-2023.)
 |-  K  =  ( MetOpen `  ( abs  o.  -  )
 )   &    |-  J  =  ( Kt  A )   =>    |-  ( ( A  C_  CC  /\  B  e.  A )  ->  ( F  e.  ( ( J  CnP  K ) `  B ) 
 ->  ( F : A --> CC  /\  ( F `  B )  e.  ( F lim CC  B ) ) ) )
 
Theoremcnplimclemle 15225 Lemma for cnplimccntop 15227. Satisfying the epsilon condition for continuity. (Contributed by Mario Carneiro and Jim Kingdon, 17-Nov-2023.)
 |-  K  =  ( MetOpen `  ( abs  o.  -  )
 )   &    |-  J  =  ( Kt  A )   &    |-  ( ph  ->  A 
 C_  CC )   &    |-  ( ph  ->  F : A --> CC )   &    |-  ( ph  ->  B  e.  A )   &    |-  ( ph  ->  ( F `  B )  e.  ( F lim CC  B ) )   &    |-  ( ph  ->  E  e.  RR+ )   &    |-  ( ph  ->  D  e.  RR+ )   &    |-  ( ph  ->  Z  e.  A )   &    |-  (
 ( ph  /\  Z #  B  /\  ( abs `  ( Z  -  B ) )  <  D )  ->  ( abs `  ( ( F `  Z )  -  ( F `  B ) ) )  <  ( E  /  2 ) )   &    |-  ( ph  ->  ( abs `  ( Z  -  B ) )  <  D )   =>    |-  ( ph  ->  ( abs `  ( ( F `  Z )  -  ( F `  B ) ) )  <  E )
 
Theoremcnplimclemr 15226 Lemma for cnplimccntop 15227. The reverse direction. (Contributed by Mario Carneiro and Jim Kingdon, 17-Nov-2023.)
 |-  K  =  ( MetOpen `  ( abs  o.  -  )
 )   &    |-  J  =  ( Kt  A )   &    |-  ( ph  ->  A 
 C_  CC )   &    |-  ( ph  ->  F : A --> CC )   &    |-  ( ph  ->  B  e.  A )   &    |-  ( ph  ->  ( F `  B )  e.  ( F lim CC  B ) )   =>    |-  ( ph  ->  F  e.  ( ( J  CnP  K ) `  B ) )
 
Theoremcnplimccntop 15227 A function is continuous at  B iff its limit at  B equals the value of the function there. (Contributed by Mario Carneiro, 28-Dec-2016.)
 |-  K  =  ( MetOpen `  ( abs  o.  -  )
 )   &    |-  J  =  ( Kt  A )   =>    |-  ( ( A  C_  CC  /\  B  e.  A )  ->  ( F  e.  ( ( J  CnP  K ) `  B )  <-> 
 ( F : A --> CC  /\  ( F `  B )  e.  ( F lim CC  B ) ) ) )
 
Theoremcnlimcim 15228* If  F is a continuous function, the limit of the function at each point equals the value of the function. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 16-Jun-2023.)
 |-  ( A  C_  CC  ->  ( F  e.  ( A -cn-> CC )  ->  ( F : A --> CC  /\  A. x  e.  A  ( F `  x )  e.  ( F lim CC  x ) ) ) )
 
Theoremcnlimc 15229*  F is a continuous function iff the limit of the function at each point equals the value of the function. (Contributed by Mario Carneiro, 28-Dec-2016.)
 |-  ( A  C_  CC  ->  ( F  e.  ( A -cn-> CC )  <->  ( F : A
 --> CC  /\  A. x  e.  A  ( F `  x )  e.  ( F lim CC  x ) ) ) )
 
Theoremcnlimci 15230 If  F is a continuous function, then the limit of the function at any point equals its value. (Contributed by Mario Carneiro, 28-Dec-2016.)
 |-  ( ph  ->  F  e.  ( A -cn-> D ) )   &    |-  ( ph  ->  B  e.  A )   =>    |-  ( ph  ->  ( F `  B )  e.  ( F lim CC  B ) )
 
Theoremcnmptlimc 15231* If  F is a continuous function, then the limit of the function at any point equals its value. (Contributed by Mario Carneiro, 28-Dec-2016.)
 |-  ( ph  ->  ( x  e.  A  |->  X )  e.  ( A -cn-> D ) )   &    |-  ( ph  ->  B  e.  A )   &    |-  ( x  =  B  ->  X  =  Y )   =>    |-  ( ph  ->  Y  e.  ( ( x  e.  A  |->  X ) lim
 CC  B ) )
 
Theoremlimccnpcntop 15232 If the limit of  F at  B is  C and  G is continuous at  C, then the limit of  G  o.  F at  B is  G ( C ). (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 18-Jun-2023.)
 |-  ( ph  ->  F : A --> D )   &    |-  ( ph  ->  D  C_  CC )   &    |-  K  =  ( MetOpen `  ( abs  o.  -  )
 )   &    |-  J  =  ( Kt  D )   &    |-  ( ph  ->  C  e.  ( F lim CC  B ) )   &    |-  ( ph  ->  G  e.  (
 ( J  CnP  K ) `  C ) )   =>    |-  ( ph  ->  ( G `  C )  e.  (
 ( G  o.  F ) lim CC  B ) )
 
Theoremlimccnp2lem 15233* Lemma for limccnp2cntop 15234. This is most of the result, expressed in epsilon-delta form, with a large number of hypotheses so that lengthy expressions do not need to be repeated. (Contributed by Jim Kingdon, 9-Nov-2023.)
 |-  ( ( ph  /\  x  e.  A )  ->  R  e.  X )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  S  e.  Y )   &    |-  ( ph  ->  X  C_  CC )   &    |-  ( ph  ->  Y  C_ 
 CC )   &    |-  K  =  (
 MetOpen `  ( abs  o.  -  ) )   &    |-  J  =  ( ( K  tX  K )t  ( X  X.  Y ) )   &    |-  ( ph  ->  C  e.  ( ( x  e.  A  |->  R ) lim
 CC  B ) )   &    |-  ( ph  ->  D  e.  ( ( x  e.  A  |->  S ) lim CC  B ) )   &    |-  ( ph  ->  H  e.  (
 ( J  CnP  K ) `  <. C ,  D >. ) )   &    |-  F/ x ph   &    |-  ( ph  ->  E  e.  RR+ )   &    |-  ( ph  ->  L  e.  RR+ )   &    |-  ( ph  ->  A. r  e.  X  A. s  e.  Y  (
 ( ( C ( ( abs  o.  -  )  |`  ( X  X.  X ) ) r )  <  L  /\  ( D ( ( abs 
 o.  -  )  |`  ( Y  X.  Y ) ) s )  <  L )  ->  ( ( C H D ) ( abs  o.  -  )
 ( r H s ) )  <  E ) )   &    |-  ( ph  ->  F  e.  RR+ )   &    |-  ( ph  ->  A. x  e.  A  ( ( x #  B  /\  ( abs `  ( x  -  B ) )  <  F )  ->  ( abs `  ( R  -  C ) )  <  L ) )   &    |-  ( ph  ->  G  e.  RR+ )   &    |-  ( ph  ->  A. x  e.  A  ( ( x #  B  /\  ( abs `  ( x  -  B ) )  <  G )  ->  ( abs `  ( S  -  D ) )  <  L ) )   =>    |-  ( ph  ->  E. d  e.  RR+  A. x  e.  A  ( ( x #  B  /\  ( abs `  ( x  -  B ) )  <  d )  ->  ( abs `  ( ( R H S )  -  ( C H D ) ) )  <  E ) )
 
Theoremlimccnp2cntop 15234* The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 14-Nov-2023.)
 |-  ( ( ph  /\  x  e.  A )  ->  R  e.  X )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  S  e.  Y )   &    |-  ( ph  ->  X  C_  CC )   &    |-  ( ph  ->  Y  C_ 
 CC )   &    |-  K  =  (
 MetOpen `  ( abs  o.  -  ) )   &    |-  J  =  ( ( K  tX  K )t  ( X  X.  Y ) )   &    |-  ( ph  ->  C  e.  ( ( x  e.  A  |->  R ) lim
 CC  B ) )   &    |-  ( ph  ->  D  e.  ( ( x  e.  A  |->  S ) lim CC  B ) )   &    |-  ( ph  ->  H  e.  (
 ( J  CnP  K ) `  <. C ,  D >. ) )   =>    |-  ( ph  ->  ( C H D )  e.  ( ( x  e.  A  |->  ( R H S ) ) lim CC  B ) )
 
Theoremlimccoap 15235* Composition of two limits. This theorem is only usable in the case where  x #  X implies R(x) #  C so it is less general than might appear at first. (Contributed by Mario Carneiro, 29-Dec-2016.) (Revised by Jim Kingdon, 18-Dec-2023.)
 |-  ( ( ph  /\  x  e.  { w  e.  A  |  w #  X }
 )  ->  R  e.  { w  e.  B  |  w #  C } )   &    |-  (
 ( ph  /\  y  e. 
 { w  e.  B  |  w #  C }
 )  ->  S  e.  CC )   &    |-  ( ph  ->  C  e.  ( ( x  e.  { w  e.  A  |  w #  X }  |->  R ) lim CC  X ) )   &    |-  ( ph  ->  D  e.  (
 ( y  e.  { w  e.  B  |  w #  C }  |->  S ) lim
 CC  C ) )   &    |-  ( y  =  R  ->  S  =  T )   =>    |-  ( ph  ->  D  e.  ( ( x  e. 
 { w  e.  A  |  w #  X }  |->  T ) lim CC  X ) )
 
Theoremreldvg 15236 The derivative function is a relation. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 25-Jun-2023.)
 |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S ) ) 
 ->  Rel  ( S  _D  F ) )
 
Theoremdvlemap 15237* Closure for a difference quotient. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 27-Jun-2023.)
 |-  ( ph  ->  F : D --> CC )   &    |-  ( ph  ->  D  C_  CC )   &    |-  ( ph  ->  B  e.  D )   =>    |-  ( ( ph  /\  A  e.  { w  e.  D  |  w #  B }
 )  ->  ( (
 ( F `  A )  -  ( F `  B ) )  /  ( A  -  B ) )  e.  CC )
 
Theoremdvfvalap 15238* Value and set bounds on the derivative operator. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 27-Jun-2023.)
 |-  T  =  ( Kt  S )   &    |-  K  =  (
 MetOpen `  ( abs  o.  -  ) )   =>    |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  ( ( S  _D  F )  = 
 U_ x  e.  (
 ( int `  T ) `  A ) ( { x }  X.  (
 ( z  e.  { w  e.  A  |  w #  x }  |->  ( ( ( F `  z
 )  -  ( F `
  x ) ) 
 /  ( z  -  x ) ) ) lim
 CC  x ) ) 
 /\  ( S  _D  F )  C_  ( ( ( int `  T ) `  A )  X.  CC ) ) )
 
Theoremeldvap 15239* The differentiable predicate. A function  F is differentiable at  B with derivative  C iff  F is defined in a neighborhood of  B and the difference quotient has limit  C at  B. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 27-Jun-2023.)
 |-  T  =  ( Kt  S )   &    |-  K  =  (
 MetOpen `  ( abs  o.  -  ) )   &    |-  G  =  ( z  e.  { w  e.  A  |  w #  B }  |->  ( ( ( F `  z )  -  ( F `  B ) )  /  ( z  -  B ) ) )   &    |-  ( ph  ->  S  C_  CC )   &    |-  ( ph  ->  F : A --> CC )   &    |-  ( ph  ->  A  C_  S )   =>    |-  ( ph  ->  ( B ( S  _D  F ) C  <->  ( B  e.  ( ( int `  T ) `  A )  /\  C  e.  ( G lim CC  B ) ) ) )
 
Theoremdvcl 15240 The derivative function takes values in the complex numbers. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.)
 |-  ( ph  ->  S  C_ 
 CC )   &    |-  ( ph  ->  F : A --> CC )   &    |-  ( ph  ->  A  C_  S )   =>    |-  ( ( ph  /\  B ( S  _D  F ) C )  ->  C  e.  CC )
 
Theoremdvbssntrcntop 15241 The set of differentiable points is a subset of the interior of the domain of the function. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 27-Jun-2023.)
 |-  ( ph  ->  S  C_ 
 CC )   &    |-  ( ph  ->  F : A --> CC )   &    |-  ( ph  ->  A  C_  S )   &    |-  J  =  ( Kt  S )   &    |-  K  =  (
 MetOpen `  ( abs  o.  -  ) )   =>    |-  ( ph  ->  dom  ( S  _D  F )  C_  ( ( int `  J ) `  A ) )
 
Theoremdvbss 15242 The set of differentiable points is a subset of the domain of the function. (Contributed by Mario Carneiro, 6-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.)
 |-  ( ph  ->  S  C_ 
 CC )   &    |-  ( ph  ->  F : A --> CC )   &    |-  ( ph  ->  A  C_  S )   =>    |-  ( ph  ->  dom  ( S  _D  F )  C_  A )
 
Theoremdvbsssg 15243 The set of differentiable points is a subset of the ambient topology. (Contributed by Mario Carneiro, 18-Mar-2015.) (Revised by Jim Kingdon, 28-Jun-2023.)
 |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S ) ) 
 ->  dom  ( S  _D  F )  C_  S )
 
Theoremrecnprss 15244 Both  RR and  CC are subsets of  CC. (Contributed by Mario Carneiro, 10-Feb-2015.)
 |-  ( S  e.  { RR ,  CC }  ->  S 
 C_  CC )
 
Theoremdvfgg 15245 Explicitly write out the functionality condition on derivative for  S  =  RR and 
CC. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Jim Kingdon, 28-Jun-2023.)
 |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC 
 ^pm  S ) )  ->  ( S  _D  F ) : dom  ( S  _D  F ) --> CC )
 
Theoremdvfpm 15246 The derivative is a function. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 28-Jul-2023.)
 |-  ( F  e.  ( CC  ^pm  RR )  ->  ( RR  _D  F ) : dom  ( RR 
 _D  F ) --> CC )
 
Theoremdvfcnpm 15247 The derivative is a function. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Jim Kingdon, 28-Jul-2023.)
 |-  ( F  e.  ( CC  ^pm  CC )  ->  ( CC  _D  F ) : dom  ( CC 
 _D  F ) --> CC )
 
Theoremdvidlemap 15248* Lemma for dvid 15252 and dvconst 15251. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 2-Aug-2023.)
 |-  ( ph  ->  F : CC --> CC )   &    |-  (
 ( ph  /\  ( x  e.  CC  /\  z  e.  CC  /\  z #  x ) )  ->  ( ( ( F `  z
 )  -  ( F `
  x ) ) 
 /  ( z  -  x ) )  =  B )   &    |-  B  e.  CC   =>    |-  ( ph  ->  ( CC  _D  F )  =  ( CC  X.  { B }
 ) )
 
Theoremdvidrelem 15249* Lemma for dvidre 15254 and dvconstre 15253. Analogue of dvidlemap 15248 for real numbers rather than complex numbers. (Contributed by Jim Kingdon, 3-Oct-2025.)
 |-  ( ph  ->  F : RR --> CC )   &    |-  (
 ( ph  /\  ( x  e.  RR  /\  z  e.  RR  /\  z #  x ) )  ->  ( ( ( F `  z
 )  -  ( F `
  x ) ) 
 /  ( z  -  x ) )  =  B )   &    |-  B  e.  CC   =>    |-  ( ph  ->  ( RR  _D  F )  =  ( RR  X.  { B }
 ) )
 
Theoremdvidsslem 15250* Lemma for dvconstss 15255. Analogue of dvidlemap 15248 where  F is defined on an open subset of the real or complex numbers. (Contributed by Jim Kingdon, 3-Oct-2025.)
 |-  ( ph  ->  S  e.  { RR ,  CC } )   &    |-  J  =  ( Kt  S )   &    |-  K  =  (
 MetOpen `  ( abs  o.  -  ) )   &    |-  ( ph  ->  F : X --> CC )   &    |-  ( ph  ->  X  e.  J )   &    |-  ( ( ph  /\  ( x  e.  X  /\  z  e.  X  /\  z #  x ) )  ->  ( ( ( F `
  z )  -  ( F `  x ) )  /  ( z  -  x ) )  =  B )   &    |-  B  e.  CC   =>    |-  ( ph  ->  ( S  _D  F )  =  ( X  X.  { B } ) )
 
Theoremdvconst 15251 Derivative of a constant function. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 2-Aug-2023.)
 |-  ( A  e.  CC  ->  ( CC  _D  ( CC  X.  { A }
 ) )  =  ( CC  X.  { 0 } ) )
 
Theoremdvid 15252 Derivative of the identity function. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 2-Aug-2023.)
 |-  ( CC  _D  (  _I  |`  CC ) )  =  ( CC  X.  { 1 } )
 
Theoremdvconstre 15253 Real derivative of a constant function. (Contributed by Jim Kingdon, 3-Oct-2025.)
 |-  ( A  e.  CC  ->  ( RR  _D  ( RR  X.  { A }
 ) )  =  ( RR  X.  { 0 } ) )
 
Theoremdvidre 15254 Real derivative of the identity function. (Contributed by Jim Kingdon, 3-Oct-2025.)
 |-  ( RR  _D  (  _I  |`  RR ) )  =  ( RR  X.  { 1 } )
 
Theoremdvconstss 15255 Derivative of a constant function defined on an open set. (Contributed by Jim Kingdon, 6-Oct-2025.)
 |-  ( ph  ->  S  e.  { RR ,  CC } )   &    |-  J  =  ( Kt  S )   &    |-  K  =  (
 MetOpen `  ( abs  o.  -  ) )   &    |-  ( ph  ->  X  e.  J )   &    |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( S  _D  ( X  X.  { A } ) )  =  ( X  X.  { 0 } ) )
 
Theoremdvcnp2cntop 15256 A function is continuous at each point for which it is differentiable. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.)
 |-  J  =  ( Kt  A )   &    |-  K  =  (
 MetOpen `  ( abs  o.  -  ) )   =>    |-  ( ( ( S 
 C_  CC  /\  F : A
 --> CC  /\  A  C_  S )  /\  B  e.  dom  ( S  _D  F ) )  ->  F  e.  ( ( J  CnP  K ) `  B ) )
 
Theoremdvcn 15257 A differentiable function is continuous. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by Mario Carneiro, 7-Sep-2015.)
 |-  ( ( ( S 
 C_  CC  /\  F : A
 --> CC  /\  A  C_  S )  /\  dom  ( S  _D  F )  =  A )  ->  F  e.  ( A -cn-> CC )
 )
 
Theoremdvaddxxbr 15258 The sum rule for derivatives at a point. That is, if the derivative of  F at  C is  K and the derivative of  G at  C is  L, then the derivative of the pointwise sum of those two functions at  C is  K  +  L. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 25-Nov-2023.)
 |-  ( ph  ->  F : X --> CC )   &    |-  ( ph  ->  X  C_  S )   &    |-  ( ph  ->  G : X --> CC )   &    |-  ( ph  ->  S  C_  CC )   &    |-  ( ph  ->  C ( S  _D  F ) K )   &    |-  ( ph  ->  C ( S  _D  G ) L )   &    |-  J  =  (
 MetOpen `  ( abs  o.  -  ) )   =>    |-  ( ph  ->  C ( S  _D  ( F  oF  +  G ) ) ( K  +  L ) )
 
Theoremdvmulxxbr 15259 The product rule for derivatives at a point. For the (simpler but more limited) function version, see dvmulxx 15261. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 1-Dec-2023.)
 |-  ( ph  ->  F : X --> CC )   &    |-  ( ph  ->  X  C_  S )   &    |-  ( ph  ->  G : X --> CC )   &    |-  ( ph  ->  S  C_  CC )   &    |-  ( ph  ->  C ( S  _D  F ) K )   &    |-  ( ph  ->  C ( S  _D  G ) L )   &    |-  J  =  (
 MetOpen `  ( abs  o.  -  ) )   =>    |-  ( ph  ->  C ( S  _D  ( F  oF  x.  G ) ) ( ( K  x.  ( G `
  C ) )  +  ( L  x.  ( F `  C ) ) ) )
 
Theoremdvaddxx 15260 The sum rule for derivatives at a point. For the (more general) relation version, see dvaddxxbr 15258. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 25-Nov-2023.)
 |-  ( ph  ->  F : X --> CC )   &    |-  ( ph  ->  X  C_  S )   &    |-  ( ph  ->  G : X --> CC )   &    |-  ( ph  ->  S  e.  { RR ,  CC } )   &    |-  ( ph  ->  C  e.  dom  ( S  _D  F ) )   &    |-  ( ph  ->  C  e.  dom  ( S  _D  G ) )   =>    |-  ( ph  ->  ( ( S  _D  ( F  oF  +  G ) ) `  C )  =  ( (
 ( S  _D  F ) `  C )  +  ( ( S  _D  G ) `  C ) ) )
 
Theoremdvmulxx 15261 The product rule for derivatives at a point. For the (more general) relation version, see dvmulxxbr 15259. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 2-Dec-2023.)
 |-  ( ph  ->  F : X --> CC )   &    |-  ( ph  ->  X  C_  S )   &    |-  ( ph  ->  G : X --> CC )   &    |-  ( ph  ->  S  e.  { RR ,  CC } )   &    |-  ( ph  ->  C  e.  dom  ( S  _D  F ) )   &    |-  ( ph  ->  C  e.  dom  ( S  _D  G ) )   =>    |-  ( ph  ->  ( ( S  _D  ( F  oF  x.  G ) ) `  C )  =  ( (
 ( ( S  _D  F ) `  C )  x.  ( G `  C ) )  +  ( ( ( S  _D  G ) `  C )  x.  ( F `  C ) ) ) )
 
Theoremdviaddf 15262 The sum rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
 |-  ( ph  ->  S  e.  { RR ,  CC } )   &    |-  ( ph  ->  X 
 C_  S )   &    |-  ( ph  ->  F : X --> CC )   &    |-  ( ph  ->  G : X --> CC )   &    |-  ( ph  ->  dom  ( S  _D  F )  =  X )   &    |-  ( ph  ->  dom  ( S  _D  G )  =  X )   =>    |-  ( ph  ->  ( S  _D  ( F  oF  +  G )
 )  =  ( ( S  _D  F )  oF  +  ( S  _D  G ) ) )
 
Theoremdvimulf 15263 The product rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
 |-  ( ph  ->  S  e.  { RR ,  CC } )   &    |-  ( ph  ->  X 
 C_  S )   &    |-  ( ph  ->  F : X --> CC )   &    |-  ( ph  ->  G : X --> CC )   &    |-  ( ph  ->  dom  ( S  _D  F )  =  X )   &    |-  ( ph  ->  dom  ( S  _D  G )  =  X )   =>    |-  ( ph  ->  ( S  _D  ( F  oF  x.  G )
 )  =  ( ( ( S  _D  F )  oF  x.  G )  oF  +  (
 ( S  _D  G )  oF  x.  F ) ) )
 
Theoremdvcoapbr 15264* The chain rule for derivatives at a point. The  u #  C  -> 
( G `  u
) #  ( G `  C ) hypothesis constrains what functions work for  G. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 21-Dec-2023.)
 |-  ( ph  ->  F : X --> CC )   &    |-  ( ph  ->  X  C_  S )   &    |-  ( ph  ->  G : Y --> X )   &    |-  ( ph  ->  Y  C_  T )   &    |-  ( ph  ->  A. u  e.  Y  ( u #  C  ->  ( G `  u ) #  ( G `  C ) ) )   &    |-  ( ph  ->  S  C_  CC )   &    |-  ( ph  ->  T  C_ 
 CC )   &    |-  ( ph  ->  ( G `  C ) ( S  _D  F ) K )   &    |-  ( ph  ->  C ( T  _D  G ) L )   &    |-  J  =  (
 MetOpen `  ( abs  o.  -  ) )   =>    |-  ( ph  ->  C ( T  _D  ( F  o.  G ) ) ( K  x.  L ) )
 
Theoremdvcjbr 15265 The derivative of the conjugate of a function. For the (simpler but more limited) function version, see dvcj 15266. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
 |-  ( ph  ->  F : X --> CC )   &    |-  ( ph  ->  X  C_  RR )   &    |-  ( ph  ->  C  e.  dom  ( RR  _D  F ) )   =>    |-  ( ph  ->  C ( RR  _D  ( *  o.  F ) ) ( * `  (
 ( RR  _D  F ) `  C ) ) )
 
Theoremdvcj 15266 The derivative of the conjugate of a function. For the (more general) relation version, see dvcjbr 15265. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
 |-  ( ( F : X
 --> CC  /\  X  C_  RR )  ->  ( RR 
 _D  ( *  o.  F ) )  =  ( *  o.  ( RR  _D  F ) ) )
 
Theoremdvfre 15267 The derivative of a real function is real. (Contributed by Mario Carneiro, 1-Sep-2014.)
 |-  ( ( F : A
 --> RR  /\  A  C_  RR )  ->  ( RR 
 _D  F ) : dom  ( RR  _D  F ) --> RR )
 
Theoremdvexp 15268* Derivative of a power function. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
 |-  ( N  e.  NN  ->  ( CC  _D  ( x  e.  CC  |->  ( x ^ N ) ) )  =  ( x  e.  CC  |->  ( N  x.  ( x ^
 ( N  -  1
 ) ) ) ) )
 
Theoremdvexp2 15269* Derivative of an exponential, possibly zero power. (Contributed by Stefan O'Rear, 13-Nov-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
 |-  ( N  e.  NN0  ->  ( CC  _D  ( x  e.  CC  |->  ( x ^ N ) ) )  =  ( x  e.  CC  |->  if ( N  =  0 , 
 0 ,  ( N  x.  ( x ^
 ( N  -  1
 ) ) ) ) ) )
 
Theoremdvrecap 15270* Derivative of the reciprocal function. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Mario Carneiro, 28-Dec-2016.)
 |-  ( A  e.  CC  ->  ( CC  _D  ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) )  =  ( x  e. 
 { w  e.  CC  |  w #  0 }  |->  -u ( A  /  ( x ^ 2 ) ) ) )
 
Theoremdvmptidcn 15271 Function-builder for derivative: derivative of the identity. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 30-Dec-2023.)
 |-  ( CC  _D  ( x  e.  CC  |->  x ) )  =  ( x  e.  CC  |->  1 )
 
Theoremdvmptccn 15272* Function-builder for derivative: derivative of a constant. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 30-Dec-2023.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( CC  _D  ( x  e. 
 CC  |->  A ) )  =  ( x  e. 
 CC  |->  0 ) )
 
Theoremdvmptid 15273* Function-builder for derivative: derivative of the identity. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
 |-  ( ph  ->  S  e.  { RR ,  CC } )   =>    |-  ( ph  ->  ( S  _D  ( x  e.  S  |->  x ) )  =  ( x  e.  S  |->  1 ) )
 
Theoremdvmptc 15274* Function-builder for derivative: derivative of a constant. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
 |-  ( ph  ->  S  e.  { RR ,  CC } )   &    |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( S  _D  ( x  e.  S  |->  A ) )  =  ( x  e.  S  |->  0 ) )
 
Theoremdvmptclx 15275* Closure lemma for dvmptmulx 15277 and other related theorems. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
 |-  ( ph  ->  S  e.  { RR ,  CC } )   &    |-  ( ( ph  /\  x  e.  X ) 
 ->  A  e.  CC )   &    |-  (
 ( ph  /\  x  e.  X )  ->  B  e.  V )   &    |-  ( ph  ->  ( S  _D  ( x  e.  X  |->  A ) )  =  ( x  e.  X  |->  B ) )   &    |-  ( ph  ->  X 
 C_  S )   =>    |-  ( ( ph  /\  x  e.  X ) 
 ->  B  e.  CC )
 
Theoremdvmptaddx 15276* Function-builder for derivative, addition rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
 |-  ( ph  ->  S  e.  { RR ,  CC } )   &    |-  ( ( ph  /\  x  e.  X ) 
 ->  A  e.  CC )   &    |-  (
 ( ph  /\  x  e.  X )  ->  B  e.  V )   &    |-  ( ph  ->  ( S  _D  ( x  e.  X  |->  A ) )  =  ( x  e.  X  |->  B ) )   &    |-  ( ph  ->  X 
 C_  S )   &    |-  (
 ( ph  /\  x  e.  X )  ->  C  e.  CC )   &    |-  ( ( ph  /\  x  e.  X ) 
 ->  D  e.  W )   &    |-  ( ph  ->  ( S  _D  ( x  e.  X  |->  C ) )  =  ( x  e.  X  |->  D ) )   =>    |-  ( ph  ->  ( S  _D  ( x  e.  X  |->  ( A  +  C ) ) )  =  ( x  e.  X  |->  ( B  +  D ) ) )
 
Theoremdvmptmulx 15277* Function-builder for derivative, product rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
 |-  ( ph  ->  S  e.  { RR ,  CC } )   &    |-  ( ( ph  /\  x  e.  X ) 
 ->  A  e.  CC )   &    |-  (
 ( ph  /\  x  e.  X )  ->  B  e.  V )   &    |-  ( ph  ->  ( S  _D  ( x  e.  X  |->  A ) )  =  ( x  e.  X  |->  B ) )   &    |-  ( ph  ->  X 
 C_  S )   &    |-  (
 ( ph  /\  x  e.  X )  ->  C  e.  CC )   &    |-  ( ( ph  /\  x  e.  X ) 
 ->  D  e.  W )   &    |-  ( ph  ->  ( S  _D  ( x  e.  X  |->  C ) )  =  ( x  e.  X  |->  D ) )   =>    |-  ( ph  ->  ( S  _D  ( x  e.  X  |->  ( A  x.  C ) ) )  =  ( x  e.  X  |->  ( ( B  x.  C )  +  ( D  x.  A ) ) ) )
 
Theoremdvmptcmulcn 15278* Function-builder for derivative, product rule for constant multiplier. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 31-Dec-2023.)
 |-  ( ( ph  /\  x  e.  CC )  ->  A  e.  CC )   &    |-  ( ( ph  /\  x  e.  CC )  ->  B  e.  V )   &    |-  ( ph  ->  ( CC  _D  ( x  e.  CC  |->  A ) )  =  ( x  e.  CC  |->  B ) )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  ( CC  _D  ( x  e. 
 CC  |->  ( C  x.  A ) ) )  =  ( x  e. 
 CC  |->  ( C  x.  B ) ) )
 
Theoremdvmptnegcn 15279* Function-builder for derivative, product rule for negatives. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 31-Dec-2023.)
 |-  ( ( ph  /\  x  e.  CC )  ->  A  e.  CC )   &    |-  ( ( ph  /\  x  e.  CC )  ->  B  e.  V )   &    |-  ( ph  ->  ( CC  _D  ( x  e.  CC  |->  A ) )  =  ( x  e.  CC  |->  B ) )   =>    |-  ( ph  ->  ( CC  _D  ( x  e.  CC  |->  -u A ) )  =  ( x  e.  CC  |->  -u B ) )
 
Theoremdvmptsubcn 15280* Function-builder for derivative, subtraction rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 31-Dec-2023.)
 |-  ( ( ph  /\  x  e.  CC )  ->  A  e.  CC )   &    |-  ( ( ph  /\  x  e.  CC )  ->  B  e.  V )   &    |-  ( ph  ->  ( CC  _D  ( x  e.  CC  |->  A ) )  =  ( x  e.  CC  |->  B ) )   &    |-  (
 ( ph  /\  x  e. 
 CC )  ->  C  e.  CC )   &    |-  ( ( ph  /\  x  e.  CC )  ->  D  e.  W )   &    |-  ( ph  ->  ( CC  _D  ( x  e.  CC  |->  C ) )  =  ( x  e.  CC  |->  D ) )   =>    |-  ( ph  ->  ( CC  _D  ( x  e.  CC  |->  ( A  -  C ) ) )  =  ( x  e.  CC  |->  ( B  -  D ) ) )
 
Theoremdvmptcjx 15281* Function-builder for derivative, conjugate rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 24-May-2024.)
 |-  ( ( ph  /\  x  e.  X )  ->  A  e.  CC )   &    |-  ( ( ph  /\  x  e.  X ) 
 ->  B  e.  V )   &    |-  ( ph  ->  ( RR  _D  ( x  e.  X  |->  A ) )  =  ( x  e.  X  |->  B ) )   &    |-  ( ph  ->  X  C_  RR )   =>    |-  ( ph  ->  ( RR  _D  ( x  e.  X  |->  ( * `  A ) ) )  =  ( x  e.  X  |->  ( * `  B ) ) )
 
Theoremdvmptfsum 15282* Function-builder for derivative, finite sums rule. (Contributed by Stefan O'Rear, 12-Nov-2014.)
 |-  J  =  ( Kt  S )   &    |-  K  =  (
 TopOpen ` fld )   &    |-  ( ph  ->  S  e.  { RR ,  CC } )   &    |-  ( ph  ->  X  e.  J )   &    |-  ( ph  ->  I  e.  Fin )   &    |-  ( ( ph  /\  i  e.  I  /\  x  e.  X )  ->  A  e.  CC )   &    |-  ( ( ph  /\  i  e.  I  /\  x  e.  X )  ->  B  e.  CC )   &    |-  (
 ( ph  /\  i  e.  I )  ->  ( S  _D  ( x  e.  X  |->  A ) )  =  ( x  e.  X  |->  B ) )   =>    |-  ( ph  ->  ( S  _D  ( x  e.  X  |->  sum_
 i  e.  I  A ) )  =  ( x  e.  X  |->  sum_ i  e.  I  B )
 )
 
Theoremdveflem 15283 Derivative of the exponential function at 0. The key step in the proof is eftlub 12086, to show that  abs ( exp ( x )  - 
1  -  x )  <_  abs ( x ) ^ 2  x.  (
3  /  4 ). (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.)
 |-  0 ( CC  _D  exp ) 1
 
Theoremdvef 15284 Derivative of the exponential function. (Contributed by Mario Carneiro, 9-Aug-2014.) (Proof shortened by Mario Carneiro, 10-Feb-2015.)
 |-  ( CC  _D  exp )  =  exp
 
PART 11  BASIC REAL AND COMPLEX FUNCTIONS
 
11.1  Polynomials
 
11.1.1  Elementary properties of complex polynomials
 
Syntaxcply 15285 Extend class notation to include the set of complex polynomials.
 class Poly
 
Syntaxcidp 15286 Extend class notation to include the identity polynomial.
 class  Xp
 
Definitiondf-ply 15287* Define the set of polynomials on the complex numbers with coefficients in the given subset. (Contributed by Mario Carneiro, 17-Jul-2014.)
 |- Poly  =  ( x  e.  ~P CC  |->  { f  |  E. n  e.  NN0  E. a  e.  ( ( x  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  ( z ^
 k ) ) ) } )
 
Definitiondf-idp 15288 Define the identity polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.)
 |-  Xp  =  (  _I  |`  CC )
 
Theoremplyval 15289* Value of the polynomial set function. (Contributed by Mario Carneiro, 17-Jul-2014.)
 |-  ( S  C_  CC  ->  (Poly `  S )  =  { f  |  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  ( z ^
 k ) ) ) } )
 
Theoremplybss 15290 Reverse closure of the parameter  S of the polynomial set function. (Contributed by Mario Carneiro, 22-Jul-2014.)
 |-  ( F  e.  (Poly `  S )  ->  S  C_ 
 CC )
 
Theoremelply 15291* Definition of a polynomial with coefficients in  S. (Contributed by Mario Carneiro, 17-Jul-2014.)
 |-  ( F  e.  (Poly `  S )  <->  ( S  C_  CC  /\  E. n  e. 
 NN0  E. a  e.  (
 ( S  u.  {
 0 } )  ^m  NN0 ) F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  ( z ^
 k ) ) ) ) )
 
Theoremelply2 15292* The coefficient function can be assumed to have zeroes outside  0 ... n. (Contributed by Mario Carneiro, 20-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
 |-  ( F  e.  (Poly `  S )  <->  ( S  C_  CC  /\  E. n  e. 
 NN0  E. a  e.  (
 ( S  u.  {
 0 } )  ^m  NN0 ) ( ( a
 " ( ZZ>= `  ( n  +  1 )
 ) )  =  {
 0 }  /\  F  =  ( z  e.  CC  |->  sum_
 k  e.  ( 0
 ... n ) ( ( a `  k
 )  x.  ( z ^ k ) ) ) ) ) )
 
Theoremplyun0 15293 The set of polynomials is unaffected by the addition of zero. (This is built into the definition because all higher powers of a polynomial are effectively zero, so we require that the coefficient field contain zero to simplify some of our closure theorems.) (Contributed by Mario Carneiro, 17-Jul-2014.)
 |-  (Poly `  ( S  u.  { 0 } )
 )  =  (Poly `  S )
 
Theoremplyf 15294 A polynomial is a function on the complex numbers. (Contributed by Mario Carneiro, 22-Jul-2014.)
 |-  ( F  e.  (Poly `  S )  ->  F : CC --> CC )
 
Theoremplyss 15295 The polynomial set function preserves the subset relation. (Contributed by Mario Carneiro, 17-Jul-2014.)
 |-  ( ( S  C_  T  /\  T  C_  CC )  ->  (Poly `  S )  C_  (Poly `  T ) )
 
Theoremplyssc 15296 Every polynomial ring is contained in the ring of polynomials over  CC. (Contributed by Mario Carneiro, 22-Jul-2014.)
 |-  (Poly `  S )  C_  (Poly `  CC )
 
Theoremelplyr 15297* Sufficient condition for elementhood in the set of polynomials. (Contributed by Mario Carneiro, 17-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
 |-  ( ( S  C_  CC  /\  N  e.  NN0  /\  A : NN0 --> S ) 
 ->  ( z  e.  CC  |->  sum_
 k  e.  ( 0
 ... N ) ( ( A `  k
 )  x.  ( z ^ k ) ) )  e.  (Poly `  S ) )
 
Theoremelplyd 15298* Sufficient condition for elementhood in the set of polynomials. (Contributed by Mario Carneiro, 17-Jul-2014.)
 |-  ( ph  ->  S  C_ 
 CC )   &    |-  ( ph  ->  N  e.  NN0 )   &    |-  ( ( ph  /\  k  e.  ( 0
 ... N ) ) 
 ->  A  e.  S )   =>    |-  ( ph  ->  ( z  e.  CC  |->  sum_ k  e.  (
 0 ... N ) ( A  x.  ( z ^ k ) ) )  e.  (Poly `  S ) )
 
Theoremply1termlem 15299* Lemma for ply1term 15300. (Contributed by Mario Carneiro, 26-Jul-2014.)
 |-  F  =  ( z  e.  CC  |->  ( A  x.  ( z ^ N ) ) )   =>    |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ...
 N ) ( if ( k  =  N ,  A ,  0 )  x.  ( z ^
 k ) ) ) )
 
Theoremply1term 15300* A one-term polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.)
 |-  F  =  ( z  e.  CC  |->  ( A  x.  ( z ^ N ) ) )   =>    |-  ( ( S  C_  CC  /\  A  e.  S  /\  N  e.  NN0 )  ->  F  e.  (Poly `  S ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16195
  Copyright terms: Public domain < Previous  Next >