HomeHome Intuitionistic Logic Explorer
Theorem List (p. 153 of 154)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 15201-15300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorembj-inf2vnlem2 15201* Lemma for bj-inf2vnlem3 15202 and bj-inf2vnlem4 15203. Remark: unoptimized proof (have to use more deduction style). (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
 |-  ( A. x  e.  A  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y )  ->  (Ind  Z  ->  A. u (
 A. t  e.  u  ( t  e.  A  ->  t  e.  Z ) 
 ->  ( u  e.  A  ->  u  e.  Z ) ) ) )
 
Theorembj-inf2vnlem3 15202* Lemma for bj-inf2vn 15204. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
 |- BOUNDED  A   &    |- BOUNDED  Z   =>    |-  ( A. x  e.  A  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y )  ->  (Ind  Z  ->  A  C_  Z ) )
 
Theorembj-inf2vnlem4 15203* Lemma for bj-inf2vn2 15205. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
 |-  ( A. x  e.  A  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y )  ->  (Ind  Z  ->  A  C_  Z ) )
 
Theorembj-inf2vn 15204* A sufficient condition for  om to be a set. See bj-inf2vn2 15205 for the unbounded version from full set induction. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
 |- BOUNDED  A   =>    |-  ( A  e.  V  ->  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  ->  A  =  om )
 )
 
Theorembj-inf2vn2 15205* A sufficient condition for  om to be a set; unbounded version of bj-inf2vn 15204. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
 |-  ( A  e.  V  ->  (
 A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  ->  A  =  om )
 )
 
Axiomax-inf2 15206* Another axiom of infinity in a constructive setting (see ax-infvn 15171). (Contributed by BJ, 14-Nov-2019.) (New usage is discouraged.)
 |-  E. a A. x ( x  e.  a  <->  ( x  =  (/)  \/  E. y  e.  a  x  =  suc  y ) )
 
Theorembj-omex2 15207 Using bounded set induction and the strong axiom of infinity,  om is a set, that is, we recover ax-infvn 15171 (see bj-2inf 15168 for the equivalence of the latter with bj-omex 15172). (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  om  e.  _V
 
Theorembj-nn0sucALT 15208* Alternate proof of bj-nn0suc 15194, also constructive but from ax-inf2 15206, hence requiring ax-bdsetind 15198. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A  e.  om  <->  ( A  =  (/) 
 \/  E. x  e.  om  A  =  suc  x ) )
 
13.2.11.2  Full induction

In this section, using the axiom of set induction, we prove full induction on the set of natural numbers.

 
Theorembj-findis 15209* Principle of induction, using implicit substitutions (the biconditional versions of the hypotheses are implicit substitutions, and we have weakened them to implications). Constructive proof (from CZF). See bj-bdfindis 15177 for a bounded version not requiring ax-setind 4554. See finds 4617 for a proof in IZF. From this version, it is easy to prove of finds 4617, finds2 4618, finds1 4619. (Contributed by BJ, 22-Dec-2019.) (Proof modification is discouraged.)
 |-  F/ x ps   &    |-  F/ x ch   &    |-  F/ x th   &    |-  ( x  =  (/)  ->  ( ps  ->  ph ) )   &    |-  ( x  =  y  ->  ( ph  ->  ch ) )   &    |-  ( x  =  suc  y  ->  ( th  ->  ph ) )   =>    |-  ( ( ps  /\  A. y  e.  om  ( ch  ->  th ) )  ->  A. x  e.  om  ph )
 
Theorembj-findisg 15210* Version of bj-findis 15209 using a class term in the consequent. Constructive proof (from CZF). See the comment of bj-findis 15209 for explanations. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
 |-  F/ x ps   &    |-  F/ x ch   &    |-  F/ x th   &    |-  ( x  =  (/)  ->  ( ps  ->  ph ) )   &    |-  ( x  =  y  ->  ( ph  ->  ch ) )   &    |-  ( x  =  suc  y  ->  ( th  ->  ph ) )   &    |-  F/_ x A   &    |-  F/ x ta   &    |-  ( x  =  A  ->  (
 ph  ->  ta ) )   =>    |-  ( ( ps 
 /\  A. y  e.  om  ( ch  ->  th )
 )  ->  ( A  e.  om  ->  ta )
 )
 
Theorembj-findes 15211 Principle of induction, using explicit substitutions. Constructive proof (from CZF). See the comment of bj-findis 15209 for explanations. From this version, it is easy to prove findes 4620. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
 |-  (
 ( [. (/)  /  x ]. ph 
 /\  A. x  e.  om  ( ph  ->  [. suc  x  /  x ]. ph )
 )  ->  A. x  e. 
 om  ph )
 
13.2.12  CZF: Strong collection

In this section, we state the axiom scheme of strong collection, which is part of CZF set theory.

 
Axiomax-strcoll 15212* Axiom scheme of strong collection. It is stated with all possible disjoint variable conditions, to show that this weak form is sufficient. The antecedent means that  ph represents a multivalued function on  a, or equivalently a collection of nonempty classes indexed by  a, and the axiom asserts the existence of a set  b which "collects" at least one element in the image of each  x  e.  a and which is made only of such elements. That second conjunct is what makes it "strong", compared to the axiom scheme of collection ax-coll 4133. (Contributed by BJ, 5-Oct-2019.)
 |-  A. a
 ( A. x  e.  a  E. y ph  ->  E. b
 ( A. x  e.  a  E. y  e.  b  ph 
 /\  A. y  e.  b  E. x  e.  a  ph ) )
 
Theoremstrcoll2 15213* Version of ax-strcoll 15212 with one disjoint variable condition removed and without initial universal quantifier. (Contributed by BJ, 5-Oct-2019.)
 |-  ( A. x  e.  a  E. y ph  ->  E. b
 ( A. x  e.  a  E. y  e.  b  ph 
 /\  A. y  e.  b  E. x  e.  a  ph ) )
 
Theoremstrcollnft 15214* Closed form of strcollnf 15215. (Contributed by BJ, 21-Oct-2019.)
 |-  ( A. x A. y F/ b ph  ->  ( A. x  e.  a  E. y ph  ->  E. b
 ( A. x  e.  a  E. y  e.  b  ph 
 /\  A. y  e.  b  E. x  e.  a  ph ) ) )
 
Theoremstrcollnf 15215* Version of ax-strcoll 15212 with one disjoint variable condition removed, the other disjoint variable condition replaced with a nonfreeness hypothesis, and without initial universal quantifier. Version of strcoll2 15213 with the disjoint variable condition on  b , 
ph replaced with a nonfreeness hypothesis.

This proof aims to demonstrate a standard technique, but strcoll2 15213 will generally suffice: since the theorem asserts the existence of a set  b, supposing that that setvar does not occur in the already defined  ph is not a big constraint. (Contributed by BJ, 21-Oct-2019.)

 |-  F/ b ph   =>    |-  ( A. x  e.  a  E. y ph  ->  E. b ( A. x  e.  a  E. y  e.  b  ph  /\ 
 A. y  e.  b  E. x  e.  a  ph ) )
 
TheoremstrcollnfALT 15216* Alternate proof of strcollnf 15215, not using strcollnft 15214. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  F/ b ph   =>    |-  ( A. x  e.  a  E. y ph  ->  E. b ( A. x  e.  a  E. y  e.  b  ph  /\ 
 A. y  e.  b  E. x  e.  a  ph ) )
 
13.2.13  CZF: Subset collection

In this section, we state the axiom scheme of subset collection, which is part of CZF set theory.

 
Axiomax-sscoll 15217* Axiom scheme of subset collection. It is stated with all possible disjoint variable conditions, to show that this weak form is sufficient. The antecedent means that  ph represents a multivalued function from  a to  b, or equivalently a collection of nonempty subsets of  b indexed by  a, and the consequent asserts the existence of a subset of  c which "collects" at least one element in the image of each  x  e.  a and which is made only of such elements. The axiom asserts the existence, for any sets  a ,  b, of a set  c such that that implication holds for any value of the parameter  z of  ph. (Contributed by BJ, 5-Oct-2019.)
 |-  A. a A. b E. c A. z ( A. x  e.  a  E. y  e.  b  ph  ->  E. d  e.  c  ( A. x  e.  a  E. y  e.  d  ph  /\ 
 A. y  e.  d  E. x  e.  a  ph ) )
 
Theoremsscoll2 15218* Version of ax-sscoll 15217 with two disjoint variable conditions removed and without initial universal quantifiers. (Contributed by BJ, 5-Oct-2019.)
 |-  E. c A. z ( A. x  e.  a  E. y  e.  b  ph  ->  E. d  e.  c  ( A. x  e.  a  E. y  e.  d  ph  /\ 
 A. y  e.  d  E. x  e.  a  ph ) )
 
13.2.14  Real numbers
 
Axiomax-ddkcomp 15219 Axiom of Dedekind completeness for Dedekind real numbers: every inhabited upper-bounded located set of reals has a real upper bound. Ideally, this axiom should be "proved" as "axddkcomp" for the real numbers constructed from IZF, and then Axiom ax-ddkcomp 15219 should be used in place of construction specific results. In particular, axcaucvg 7930 should be proved from it. (Contributed by BJ, 24-Oct-2021.)
 |-  (
 ( ( A  C_  RR  /\  E. x  x  e.  A )  /\  E. x  e.  RR  A. y  e.  A  y  <  x  /\  A. x  e.  RR  A. y  e. 
 RR  ( x  < 
 y  ->  ( E. z  e.  A  x  <  z  \/  A. z  e.  A  z  <  y
 ) ) )  ->  E. x  e.  RR  ( A. y  e.  A  y  <_  x  /\  (
 ( B  e.  R  /\  A. y  e.  A  y  <_  B )  ->  x  <_  B ) ) )
 
13.3  Mathbox for Jim Kingdon
 
13.3.1  Propositional and predicate logic
 
Theoremnnnotnotr 15220 Double negation of double negation elimination. Suggested by an online post by Martin Escardo. Although this statement resembles nnexmid 851, it can be proved with reference only to implication and negation (that is, without use of disjunction). (Contributed by Jim Kingdon, 21-Oct-2024.)
 |-  -.  -.  ( -.  -.  ph  -> 
 ph )
 
13.3.2  Natural numbers
 
Theorem1dom1el 15221 If a set is dominated by one, then any two of its elements are equal. (Contributed by Jim Kingdon, 23-Apr-2025.)
 |-  (
 ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  ->  B  =  C )
 
Theoremss1oel2o 15222 Any subset of ordinal one being an element of ordinal two is equivalent to excluded middle. A variation of exmid01 4216 which more directly illustrates the contrast with el2oss1o 6469. (Contributed by Jim Kingdon, 8-Aug-2022.)
 |-  (EXMID  <->  A. x ( x 
 C_  1o  ->  x  e. 
 2o ) )
 
Theoremnnti 15223 Ordering on a natural number generates a tight apartness. (Contributed by Jim Kingdon, 7-Aug-2022.)
 |-  ( ph  ->  A  e.  om )   =>    |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A )
 )  ->  ( u  =  v  <->  ( -.  u  _E  v  /\  -.  v  _E  u ) ) )
 
Theorem012of 15224 Mapping zero and one between  NN0 and  om style integers. (Contributed by Jim Kingdon, 28-Jun-2024.)
 |-  G  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   =>    |-  ( `' G  |`  { 0 ,  1 } ) : { 0 ,  1 } --> 2o
 
Theorem2o01f 15225 Mapping zero and one between  om and  NN0 style integers. (Contributed by Jim Kingdon, 28-Jun-2024.)
 |-  G  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   =>    |-  ( G  |`  2o ) : 2o --> { 0 ,  1 }
 
13.3.3  The power set of a singleton
 
Theorempwtrufal 15226 A subset of the singleton  { (/) } cannot be anything other than  (/) or  { (/) }. Removing the double negation would change the meaning, as seen at exmid01 4216. If we view a subset of a singleton as a truth value (as seen in theorems like exmidexmid 4214), then this theorem states there are no truth values other than true and false, as described in section 1.1 of [Bauer], p. 481. (Contributed by Mario Carneiro and Jim Kingdon, 11-Sep-2023.)
 |-  ( A  C_  { (/) }  ->  -. 
 -.  ( A  =  (/) 
 \/  A  =  { (/)
 } ) )
 
Theorempwle2 15227* An exercise related to  N copies of a singleton and the power set of a singleton (where the latter can also be thought of as representing truth values). Posed as an exercise by Martin Escardo online. (Contributed by Jim Kingdon, 3-Sep-2023.)
 |-  T  =  U_ x  e.  N  ( { x }  X.  1o )   =>    |-  ( ( N  e.  om 
 /\  G : T -1-1-> ~P 1o )  ->  N  C_ 
 2o )
 
Theorempwf1oexmid 15228* An exercise related to  N copies of a singleton and the power set of a singleton (where the latter can also be thought of as representing truth values). Posed as an exercise by Martin Escardo online. (Contributed by Jim Kingdon, 3-Sep-2023.)
 |-  T  =  U_ x  e.  N  ( { x }  X.  1o )   =>    |-  ( ( N  e.  om 
 /\  G : T -1-1-> ~P 1o )  ->  ( ran  G  =  ~P 1o  <->  ( N  =  2o  /\ EXMID ) ) )
 
Theoremsubctctexmid 15229* If every subcountable set is countable and Markov's principle holds, excluded middle follows. Proposition 2.6 of [BauerSwan], p. 14:4. The proof is taken from that paper. (Contributed by Jim Kingdon, 29-Nov-2023.)
 |-  ( ph  ->  A. x ( E. s ( s  C_  om 
 /\  E. f  f : s -onto-> x )  ->  E. g  g : om -onto-> ( x 1o ) ) )   &    |-  ( ph  ->  om  e. Markov )   =>    |-  ( ph  -> EXMID )
 
Theoremsssneq 15230* Any two elements of a subset of a singleton are equal. (Contributed by Jim Kingdon, 28-May-2024.)
 |-  ( A  C_  { B }  ->  A. y  e.  A  A. z  e.  A  y  =  z )
 
Theorempw1nct 15231* A condition which ensures that the powerset of a singleton is not countable. The antecedent here can be referred to as the uniformity principle. Based on Mastodon posts by Andrej Bauer and Rahul Chhabra. (Contributed by Jim Kingdon, 29-May-2024.)
 |-  ( A. r ( r  C_  ( ~P 1o  X.  om )  ->  ( A. p  e.  ~P  1o E. n  e.  om  p r n 
 ->  E. m  e.  om  A. q  e.  ~P  1o q r m ) )  ->  -.  E. f  f : om -onto-> ( ~P 1o 1o ) )
 
13.3.4  Omniscience of NN+oo
 
Theorem0nninf 15232 The zero element of ℕ (the constant sequence equal to  (/)). (Contributed by Jim Kingdon, 14-Jul-2022.)
 |-  ( om  X.  { (/) } )  e.
 
Theoremnnsf 15233* Domain and range of  S. Part of Definition 3.3 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 30-Jul-2022.)
 |-  S  =  ( p  e. 
 |->  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( p `
  U. i ) ) ) )   =>    |-  S : -->
 
Theorempeano4nninf 15234* The successor function on ℕ is one to one. Half of Lemma 3.4 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 31-Jul-2022.)
 |-  S  =  ( p  e. 
 |->  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( p `
  U. i ) ) ) )   =>    |-  S : -1-1->
 
Theorempeano3nninf 15235* The successor function on ℕ is never zero. Half of Lemma 3.4 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 1-Aug-2022.)
 |-  S  =  ( p  e. 
 |->  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( p `
  U. i ) ) ) )   =>    |-  ( A  e.  ->  ( S `  A )  =/=  ( x  e.  om  |->  (/) ) )
 
Theoremnninfalllem1 15236* Lemma for nninfall 15237. (Contributed by Jim Kingdon, 1-Aug-2022.)
 |-  ( ph  ->  Q  e.  ( 2o  ^m ) )   &    |-  ( ph  ->  ( Q `  ( x  e.  om  |->  1o )
 )  =  1o )   &    |-  ( ph  ->  A. n  e.  om  ( Q `  ( i  e.  om  |->  if (
 i  e.  n ,  1o ,  (/) ) ) )  =  1o )   &    |-  ( ph  ->  P  e. )   &    |-  ( ph  ->  ( Q `  P )  =  (/) )   =>    |-  ( ph  ->  A. n  e.  om  ( P `  n )  =  1o )
 
Theoremnninfall 15237* Given a decidable predicate on ℕ, showing it holds for natural numbers and the point at infinity suffices to show it holds everywhere. The sense in which  Q is a decidable predicate is that it assigns a value of either  (/) or  1o (which can be thought of as false and true) to every element of ℕ. Lemma 3.5 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 1-Aug-2022.)
 |-  ( ph  ->  Q  e.  ( 2o  ^m ) )   &    |-  ( ph  ->  ( Q `  ( x  e.  om  |->  1o )
 )  =  1o )   &    |-  ( ph  ->  A. n  e.  om  ( Q `  ( i  e.  om  |->  if (
 i  e.  n ,  1o ,  (/) ) ) )  =  1o )   =>    |-  ( ph  ->  A. p  e.  ( Q `  p )  =  1o )
 
Theoremnninfsellemdc 15238* Lemma for nninfself 15241. Showing that the selection function is well defined. (Contributed by Jim Kingdon, 8-Aug-2022.)
 |-  (
 ( Q  e.  ( 2o  ^m )  /\  N  e.  om )  -> DECID  A. k  e.  suc  N ( Q `  (
 i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )
 
Theoremnninfsellemcl 15239* Lemma for nninfself 15241. (Contributed by Jim Kingdon, 8-Aug-2022.)
 |-  (
 ( Q  e.  ( 2o  ^m )  /\  N  e.  om )  ->  if ( A. k  e.  suc  N ( Q `  ( i  e.  om  |->  if (
 i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  e.  2o )
 
Theoremnninfsellemsuc 15240* Lemma for nninfself 15241. (Contributed by Jim Kingdon, 6-Aug-2022.)
 |-  (
 ( Q  e.  ( 2o  ^m )  /\  J  e.  om )  ->  if ( A. k  e.  suc  suc  J ( Q `  ( i  e.  om  |->  if (
 i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  C_  if ( A. k  e.  suc  J ( Q `  (
 i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
 
Theoremnninfself 15241* Domain and range of the selection function for ℕ. (Contributed by Jim Kingdon, 6-Aug-2022.)
 |-  E  =  ( q  e.  ( 2o  ^m )  |->  ( n  e. 
 om  |->  if ( A. k  e.  suc  n ( q `
  ( i  e. 
 om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )   =>    |-  E : ( 2o  ^m ) -->
 
Theoremnninfsellemeq 15242* Lemma for nninfsel 15245. (Contributed by Jim Kingdon, 9-Aug-2022.)
 |-  E  =  ( q  e.  ( 2o  ^m )  |->  ( n  e. 
 om  |->  if ( A. k  e.  suc  n ( q `
  ( i  e. 
 om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )   &    |-  ( ph  ->  Q  e.  ( 2o  ^m ) )   &    |-  ( ph  ->  ( Q `  ( E `
  Q ) )  =  1o )   &    |-  ( ph  ->  N  e.  om )   &    |-  ( ph  ->  A. k  e.  N  ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )   &    |-  ( ph  ->  ( Q `  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) ) )  =  (/) )   =>    |-  ( ph  ->  ( E `  Q )  =  ( i  e. 
 om  |->  if ( i  e.  N ,  1o ,  (/) ) ) )
 
Theoremnninfsellemqall 15243* Lemma for nninfsel 15245. (Contributed by Jim Kingdon, 9-Aug-2022.)
 |-  E  =  ( q  e.  ( 2o  ^m )  |->  ( n  e. 
 om  |->  if ( A. k  e.  suc  n ( q `
  ( i  e. 
 om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )   &    |-  ( ph  ->  Q  e.  ( 2o  ^m ) )   &    |-  ( ph  ->  ( Q `  ( E `
  Q ) )  =  1o )   &    |-  ( ph  ->  N  e.  om )   =>    |-  ( ph  ->  ( Q `  ( i  e. 
 om  |->  if ( i  e.  N ,  1o ,  (/) ) ) )  =  1o )
 
Theoremnninfsellemeqinf 15244* Lemma for nninfsel 15245. (Contributed by Jim Kingdon, 9-Aug-2022.)
 |-  E  =  ( q  e.  ( 2o  ^m )  |->  ( n  e. 
 om  |->  if ( A. k  e.  suc  n ( q `
  ( i  e. 
 om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )   &    |-  ( ph  ->  Q  e.  ( 2o  ^m ) )   &    |-  ( ph  ->  ( Q `  ( E `
  Q ) )  =  1o )   =>    |-  ( ph  ->  ( E `  Q )  =  ( i  e. 
 om  |->  1o ) )
 
Theoremnninfsel 15245*  E is a selection function for ℕ. Theorem 3.6 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 9-Aug-2022.)
 |-  E  =  ( q  e.  ( 2o  ^m )  |->  ( n  e. 
 om  |->  if ( A. k  e.  suc  n ( q `
  ( i  e. 
 om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )   &    |-  ( ph  ->  Q  e.  ( 2o  ^m ) )   &    |-  ( ph  ->  ( Q `  ( E `
  Q ) )  =  1o )   =>    |-  ( ph  ->  A. p  e.  ( Q `  p )  =  1o )
 
Theoremnninfomnilem 15246* Lemma for nninfomni 15247. (Contributed by Jim Kingdon, 10-Aug-2022.)
 |-  E  =  ( q  e.  ( 2o  ^m )  |->  ( n  e. 
 om  |->  if ( A. k  e.  suc  n ( q `
  ( i  e. 
 om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )   =>    |-  e. Omni
 
Theoremnninfomni 15247 is omniscient. Corollary 3.7 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 10-Aug-2022.)
 |-  e. Omni
 
Theoremnninffeq 15248* Equality of two functions on ℕ which agree at every integer and at the point at infinity. From an online post by Martin Escardo. Remark: the last two hypotheses can be grouped into one,  |-  ( ph  ->  A. n  e.  suc  om
... ). (Contributed by Jim Kingdon, 4-Aug-2023.)
 |-  ( ph  ->  F : --> NN0 )   &    |-  ( ph  ->  G : --> NN0 )   &    |-  ( ph  ->  ( F `  ( x  e.  om  |->  1o )
 )  =  ( G `
  ( x  e. 
 om  |->  1o ) ) )   &    |-  ( ph  ->  A. n  e. 
 om  ( F `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( G `
  ( i  e. 
 om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) )   =>    |-  ( ph  ->  F  =  G )
 
13.3.5  Schroeder-Bernstein Theorem
 
Theoremexmidsbthrlem 15249* Lemma for exmidsbthr 15250. (Contributed by Jim Kingdon, 11-Aug-2022.)
 |-  S  =  ( p  e. 
 |->  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( p `
  U. i ) ) ) )   =>    |-  ( A. x A. y ( ( x  ~<_  y  /\  y  ~<_  x )  ->  x  ~~  y )  -> EXMID )
 
Theoremexmidsbthr 15250* The Schroeder-Bernstein Theorem implies excluded middle. Theorem 1 of [PradicBrown2022], p. 1. (Contributed by Jim Kingdon, 11-Aug-2022.)
 |-  ( A. x A. y ( ( x  ~<_  y  /\  y 
 ~<_  x )  ->  x  ~~  y )  -> EXMID )
 
Theoremexmidsbth 15251* The Schroeder-Bernstein Theorem is equivalent to excluded middle. This is Metamath 100 proof #25. The forward direction (isbth 6997) is the proof of the Schroeder-Bernstein Theorem from the Metamath Proof Explorer database (in which excluded middle holds), but adapted to use EXMID as an antecedent rather than being unconditionally true, as in the non-intuitionistic proof at https://us.metamath.org/mpeuni/sbth.html 6997.

The reverse direction (exmidsbthr 15250) is the one which establishes that Schroeder-Bernstein implies excluded middle. This resolves the question of whether we will be able to prove Schroeder-Bernstein from our axioms in the negative. (Contributed by Jim Kingdon, 13-Aug-2022.)

 |-  (EXMID  <->  A. x A. y
 ( ( x  ~<_  y 
 /\  y  ~<_  x ) 
 ->  x  ~~  y ) )
 
Theoremsbthomlem 15252 Lemma for sbthom 15253. (Contributed by Mario Carneiro and Jim Kingdon, 13-Jul-2023.)
 |-  ( ph  ->  om  e. Omni )   &    |-  ( ph  ->  Y  C_  { (/) } )   &    |-  ( ph  ->  F : om -1-1-onto-> ( Y om ) )   =>    |-  ( ph  ->  ( Y  =  (/)  \/  Y  =  { (/) } ) )
 
Theoremsbthom 15253 Schroeder-Bernstein is not possible even for  om. We know by exmidsbth 15251 that full Schroeder-Bernstein will not be provable but what about the case where one of the sets is  om? That case plus the Limited Principle of Omniscience (LPO) implies excluded middle, so we will not be able to prove it. (Contributed by Mario Carneiro and Jim Kingdon, 10-Jul-2023.)
 |-  (
 ( A. x ( ( x  ~<_  om  /\  om  ~<_  x ) 
 ->  x  ~~  om )  /\  om  e. Omni )  -> EXMID )
 
13.3.6  Real and complex numbers
 
Theoremqdencn 15254* The set of complex numbers whose real and imaginary parts are rational is dense in the complex plane. This is a two dimensional analogue to qdenre 11246 (and also would hold for  RR  X.  RR with the usual metric; this is not about complex numbers in particular). (Contributed by Jim Kingdon, 18-Oct-2021.)
 |-  Q  =  { z  e.  CC  |  ( ( Re `  z )  e.  QQ  /\  ( Im `  z
 )  e.  QQ ) }   =>    |-  ( ( A  e.  CC  /\  B  e.  RR+ )  ->  E. x  e.  Q  ( abs `  ( x  -  A ) )  <  B )
 
Theoremrefeq 15255* Equality of two real functions which agree at negative numbers, positive numbers, and zero. This holds even without real trichotomy. From an online post by Martin Escardo. (Contributed by Jim Kingdon, 9-Jul-2023.)
 |-  ( ph  ->  F : RR --> RR )   &    |-  ( ph  ->  G : RR --> RR )   &    |-  ( ph  ->  A. x  e.  RR  ( x  <  0  ->  ( F `  x )  =  ( G `  x ) ) )   &    |-  ( ph  ->  A. x  e. 
 RR  ( 0  < 
 x  ->  ( F `  x )  =  ( G `  x ) ) )   &    |-  ( ph  ->  ( F `  0 )  =  ( G `  0 ) )   =>    |-  ( ph  ->  F  =  G )
 
Theoremtriap 15256 Two ways of stating real number trichotomy. (Contributed by Jim Kingdon, 23-Aug-2023.)
 |-  (
 ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  <  B  \/  A  =  B  \/  B  <  A )  <-> DECID  A #  B ) )
 
Theoremisomninnlem 15257* Lemma for isomninn 15258. The result, with a hypothesis to provide a convenient notation. (Contributed by Jim Kingdon, 30-Aug-2023.)
 |-  G  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   =>    |-  ( A  e.  V  ->  ( A  e. Omni  <->  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 )
 ) )
 
Theoremisomninn 15258* Omniscience stated in terms of natural numbers. Similar to isomnimap 7166 but it will sometimes be more convenient to use  0 and  1 rather than  (/) and  1o. (Contributed by Jim Kingdon, 30-Aug-2023.)
 |-  ( A  e.  V  ->  ( A  e. Omni  <->  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 )
 ) )
 
Theoremcvgcmp2nlemabs 15259* Lemma for cvgcmp2n 15260. The partial sums get closer to each other as we go further out. The proof proceeds by rewriting  (  seq 1
(  +  ,  G
) `  N ) as the sum of  (  seq 1
(  +  ,  G
) `  M ) and a term which gets smaller as  M gets large. (Contributed by Jim Kingdon, 25-Aug-2023.)
 |-  (
 ( ph  /\  k  e. 
 NN )  ->  ( G `  k )  e. 
 RR )   &    |-  ( ( ph  /\  k  e.  NN )  ->  0  <_  ( G `  k ) )   &    |-  (
 ( ph  /\  k  e. 
 NN )  ->  ( G `  k )  <_  ( 1  /  (
 2 ^ k ) ) )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  N  e.  ( ZZ>=
 `  M ) )   =>    |-  ( ph  ->  ( abs `  ( (  seq 1
 (  +  ,  G ) `  N )  -  (  seq 1 (  +  ,  G ) `  M ) ) )  < 
 ( 2  /  M ) )
 
Theoremcvgcmp2n 15260* A comparison test for convergence of a real infinite series. (Contributed by Jim Kingdon, 25-Aug-2023.)
 |-  (
 ( ph  /\  k  e. 
 NN )  ->  ( G `  k )  e. 
 RR )   &    |-  ( ( ph  /\  k  e.  NN )  ->  0  <_  ( G `  k ) )   &    |-  (
 ( ph  /\  k  e. 
 NN )  ->  ( G `  k )  <_  ( 1  /  (
 2 ^ k ) ) )   =>    |-  ( ph  ->  seq 1
 (  +  ,  G )  e.  dom  ~~>  )
 
Theoremiooref1o 15261 A one-to-one mapping from the real numbers onto the open unit interval. (Contributed by Jim Kingdon, 27-Jun-2024.)
 |-  F  =  ( x  e.  RR  |->  ( 1  /  (
 1  +  ( exp `  x ) ) ) )   =>    |-  F : RR -1-1-onto-> ( 0 (,) 1
 )
 
Theoremiooreen 15262 An open interval is equinumerous to the real numbers. (Contributed by Jim Kingdon, 27-Jun-2024.)
 |-  (
 0 (,) 1 )  ~~  RR
 
13.3.7  Analytic omniscience principles

Omniscience principles refer to several propositions, most of them weaker than full excluded middle, which do not follow from the axioms of IZF set theory.

They are: (0) the Principle of Omniscience (PO), which is another name for excluded middle (see exmidomni 7171), (1) the Limited Principle of Omniscience (LPO) is  om  e. Omni (see df-omni 7164), (2) the Weak Limited Principle of Omniscience (WLPO) is  om  e. WOmni (see df-womni 7193), (3) Markov's Principle (MP) is  om  e. Markov (see df-markov 7181), (4) the Lesser Limited Principle of Omniscience (LLPO) is not yet defined in iset.mm.

They also have analytic counterparts each of which follows from the corresponding omniscience principle: (1) Analytic LPO is real number trichotomy,  A. x  e.  RR A. y  e.  RR ( x  < 
y  \/  x  =  y  \/  y  < 
x ) (see trilpo 15270), (2) Analytic WLPO is decidability of real number equality,  A. x  e.  RR A. y  e.  RRDECID  x  =  y (see redcwlpo 15282), (3) Analytic MP is  A. x  e.  RR A. y  e.  RR ( x  =/=  y  ->  x #  y
) (see neapmkv 15295), (4) Analytic LLPO is real number dichotomy,  A. x  e.  RR A. y  e.  RR ( x  <_ 
y  \/  y  <_  x ) (most relevant current theorem is maxclpr 11266).

 
Theoremtrilpolemclim 15263* Lemma for trilpo 15270. Convergence of the series. (Contributed by Jim Kingdon, 24-Aug-2023.)
 |-  ( ph  ->  F : NN --> { 0 ,  1 } )   &    |-  G  =  ( n  e.  NN  |->  ( ( 1  /  (
 2 ^ n ) )  x.  ( F `
  n ) ) )   =>    |-  ( ph  ->  seq 1
 (  +  ,  G )  e.  dom  ~~>  )
 
Theoremtrilpolemcl 15264* Lemma for trilpo 15270. The sum exists. (Contributed by Jim Kingdon, 23-Aug-2023.)
 |-  ( ph  ->  F : NN --> { 0 ,  1 } )   &    |-  A  =  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )   =>    |-  ( ph  ->  A  e.  RR )
 
Theoremtrilpolemisumle 15265* Lemma for trilpo 15270. An upper bound for the sum of the digits beyond a certain point. (Contributed by Jim Kingdon, 28-Aug-2023.)
 |-  ( ph  ->  F : NN --> { 0 ,  1 } )   &    |-  A  =  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )   &    |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  NN )   =>    |-  ( ph  ->  sum_ i  e.  Z  ( ( 1 
 /  ( 2 ^
 i ) )  x.  ( F `  i
 ) )  <_  sum_ i  e.  Z  ( 1  /  ( 2 ^ i
 ) ) )
 
Theoremtrilpolemgt1 15266* Lemma for trilpo 15270. The  1  <  A case. (Contributed by Jim Kingdon, 23-Aug-2023.)
 |-  ( ph  ->  F : NN --> { 0 ,  1 } )   &    |-  A  =  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )   =>    |-  ( ph  ->  -.  1  <  A )
 
Theoremtrilpolemeq1 15267* Lemma for trilpo 15270. The  A  =  1 case. This is proved by noting that if any  ( F `  x
) is zero, then the infinite sum  A is less than one based on the term which is zero. We are using the fact that the  F sequence is decidable (in the sense that each element is either zero or one). (Contributed by Jim Kingdon, 23-Aug-2023.)
 |-  ( ph  ->  F : NN --> { 0 ,  1 } )   &    |-  A  =  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )   &    |-  ( ph  ->  A  =  1 )   =>    |-  ( ph  ->  A. x  e.  NN  ( F `  x )  =  1
 )
 
Theoremtrilpolemlt1 15268* Lemma for trilpo 15270. The  A  <  1 case. We can use the distance between  A and one (that is,  1  -  A) to find a position in the sequence  n where terms after that point will not add up to as much as  1  -  A. By finomni 7169 we know the terms up to  n either contain a zero or are all one. But if they are all one that contradicts the way we constructed  n, so we know that the sequence contains a zero. (Contributed by Jim Kingdon, 23-Aug-2023.)
 |-  ( ph  ->  F : NN --> { 0 ,  1 } )   &    |-  A  =  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )   &    |-  ( ph  ->  A  <  1
 )   =>    |-  ( ph  ->  E. x  e.  NN  ( F `  x )  =  0
 )
 
Theoremtrilpolemres 15269* Lemma for trilpo 15270. The result. (Contributed by Jim Kingdon, 23-Aug-2023.)
 |-  ( ph  ->  F : NN --> { 0 ,  1 } )   &    |-  A  =  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )   &    |-  ( ph  ->  ( A  <  1  \/  A  =  1  \/  1  <  A ) )   =>    |-  ( ph  ->  ( E. x  e.  NN  ( F `  x )  =  0  \/  A. x  e.  NN  ( F `  x )  =  1 ) )
 
Theoremtrilpo 15270* Real number trichotomy implies the Limited Principle of Omniscience (LPO). We expect that we'd need some form of countable choice to prove the converse.

Here's the outline of the proof. Given an infinite sequence F of zeroes and ones, we need to show the sequence contains a zero or it is all ones. Construct a real number A whose representation in base two consists of a zero, a decimal point, and then the numbers of the sequence. Compare it with one using trichotomy. The three cases from trichotomy are trilpolemlt1 15268 (which means the sequence contains a zero), trilpolemeq1 15267 (which means the sequence is all ones), and trilpolemgt1 15266 (which is not possible).

Equivalent ways to state real number trichotomy (sometimes called "analytic LPO") include decidability of real number apartness (see triap 15256) or that the real numbers are a discrete field (see trirec0 15271).

LPO is known to not be provable in IZF (and most constructive foundations), so this theorem establishes that we will be unable to prove an analogue to qtri3or 10275 for real numbers. (Contributed by Jim Kingdon, 23-Aug-2023.)

 |-  ( A. x  e.  RR  A. y  e.  RR  ( x  <  y  \/  x  =  y  \/  y  <  x )  ->  om  e. Omni )
 
Theoremtrirec0 15271* Every real number having a reciprocal or equaling zero is equivalent to real number trichotomy.

This is the key part of the definition of what is known as a discrete field, so "the real numbers are a discrete field" can be taken as an equivalent way to state real trichotomy (see further discussion at trilpo 15270). (Contributed by Jim Kingdon, 10-Jun-2024.)

 |-  ( A. x  e.  RR  A. y  e.  RR  ( x  <  y  \/  x  =  y  \/  y  <  x )  <->  A. x  e.  RR  ( E. z  e.  RR  ( x  x.  z
 )  =  1  \/  x  =  0 ) )
 
Theoremtrirec0xor 15272* Version of trirec0 15271 with exclusive-or.

The definition of a discrete field is sometimes stated in terms of exclusive-or but as proved here, this is equivalent to inclusive-or because the two disjuncts cannot be simultaneously true. (Contributed by Jim Kingdon, 10-Jun-2024.)

 |-  ( A. x  e.  RR  A. y  e.  RR  ( x  <  y  \/  x  =  y  \/  y  <  x )  <->  A. x  e.  RR  ( E. z  e.  RR  ( x  x.  z
 )  =  1  \/_  x  =  0 )
 )
 
Theoremapdifflemf 15273 Lemma for apdiff 15275. Being apart from the point halfway between  Q and  R suffices for  A to be a different distance from  Q and from  R. (Contributed by Jim Kingdon, 18-May-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  Q  e.  QQ )   &    |-  ( ph  ->  R  e.  QQ )   &    |-  ( ph  ->  Q  <  R )   &    |-  ( ph  ->  (
 ( Q  +  R )  /  2 ) #  A )   =>    |-  ( ph  ->  ( abs `  ( A  -  Q ) ) #  ( abs `  ( A  -  R ) ) )
 
Theoremapdifflemr 15274 Lemma for apdiff 15275. (Contributed by Jim Kingdon, 19-May-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  S  e.  QQ )   &    |-  ( ph  ->  ( abs `  ( A  -  -u 1 ) ) #  ( abs `  ( A  -  1 ) ) )   &    |-  ( ( ph  /\  S  =/=  0 ) 
 ->  ( abs `  ( A  -  0 ) ) #  ( abs `  ( A  -  ( 2  x.  S ) ) ) )   =>    |-  ( ph  ->  A #  S )
 
Theoremapdiff 15275* The irrationals (reals apart from any rational) are exactly those reals that are a different distance from every rational. (Contributed by Jim Kingdon, 17-May-2024.)
 |-  ( A  e.  RR  ->  (
 A. q  e.  QQ  A #  q  <->  A. q  e.  QQ  A. r  e.  QQ  (
 q  =/=  r  ->  ( abs `  ( A  -  q ) ) #  ( abs `  ( A  -  r ) ) ) ) )
 
Theoremiswomninnlem 15276* Lemma for iswomnimap 7195. The result, with a hypothesis for convenience. (Contributed by Jim Kingdon, 20-Jun-2024.)
 |-  G  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   =>    |-  ( A  e.  V  ->  ( A  e. WOmni  <->  A. f  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  (
 f `  x )  =  1 ) )
 
Theoremiswomninn 15277* Weak omniscience stated in terms of natural numbers. Similar to iswomnimap 7195 but it will sometimes be more convenient to use  0 and  1 rather than  (/) and  1o. (Contributed by Jim Kingdon, 20-Jun-2024.)
 |-  ( A  e.  V  ->  ( A  e. WOmni  <->  A. f  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  (
 f `  x )  =  1 ) )
 
Theoremiswomni0 15278* Weak omniscience stated in terms of equality with  0. Like iswomninn 15277 but with zero in place of one. (Contributed by Jim Kingdon, 24-Jul-2024.)
 |-  ( A  e.  V  ->  ( A  e. WOmni  <->  A. f  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  (
 f `  x )  =  0 ) )
 
Theoremismkvnnlem 15279* Lemma for ismkvnn 15280. The result, with a hypothesis to give a name to an expression for convenience. (Contributed by Jim Kingdon, 25-Jun-2024.)
 |-  G  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   =>    |-  ( A  e.  V  ->  ( A  e. Markov  <->  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( -.  A. x  e.  A  ( f `  x )  =  1  ->  E. x  e.  A  ( f `  x )  =  0 )
 ) )
 
Theoremismkvnn 15280* The predicate of being Markov stated in terms of set exponentiation. (Contributed by Jim Kingdon, 25-Jun-2024.)
 |-  ( A  e.  V  ->  ( A  e. Markov  <->  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( -.  A. x  e.  A  ( f `  x )  =  1  ->  E. x  e.  A  ( f `  x )  =  0 )
 ) )
 
Theoremredcwlpolemeq1 15281* Lemma for redcwlpo 15282. A biconditionalized version of trilpolemeq1 15267. (Contributed by Jim Kingdon, 21-Jun-2024.)
 |-  ( ph  ->  F : NN --> { 0 ,  1 } )   &    |-  A  =  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )   =>    |-  ( ph  ->  ( A  =  1  <->  A. x  e.  NN  ( F `  x )  =  1 ) )
 
Theoremredcwlpo 15282* Decidability of real number equality implies the Weak Limited Principle of Omniscience (WLPO). We expect that we'd need some form of countable choice to prove the converse.

Here's the outline of the proof. Given an infinite sequence F of zeroes and ones, we need to show the sequence is all ones or it is not. Construct a real number A whose representation in base two consists of a zero, a decimal point, and then the numbers of the sequence. This real number will equal one if and only if the sequence is all ones (redcwlpolemeq1 15281). Therefore decidability of real number equality would imply decidability of whether the sequence is all ones.

Because of this theorem, decidability of real number equality is sometimes called "analytic WLPO".

WLPO is known to not be provable in IZF (and most constructive foundations), so this theorem establishes that we will be unable to prove an analogue to qdceq 10279 for real numbers. (Contributed by Jim Kingdon, 20-Jun-2024.)

 |-  ( A. x  e.  RR  A. y  e.  RR DECID  x  =  y  ->  om  e. WOmni )
 
Theoremtridceq 15283* Real trichotomy implies decidability of real number equality. Or in other words, analytic LPO implies analytic WLPO (see trilpo 15270 and redcwlpo 15282). Thus, this is an analytic analogue to lpowlpo 7197. (Contributed by Jim Kingdon, 24-Jul-2024.)
 |-  ( A. x  e.  RR  A. y  e.  RR  ( x  <  y  \/  x  =  y  \/  y  <  x )  ->  A. x  e.  RR  A. y  e. 
 RR DECID  x  =  y )
 
Theoremredc0 15284* Two ways to express decidability of real number equality. (Contributed by Jim Kingdon, 23-Jul-2024.)
 |-  ( A. x  e.  RR  A. y  e.  RR DECID  x  =  y 
 <-> 
 A. z  e.  RR DECID  z  =  0 )
 
Theoremreap0 15285* Real number trichotomy is equivalent to decidability of apartness from zero. (Contributed by Jim Kingdon, 27-Jul-2024.)
 |-  ( A. x  e.  RR  A. y  e.  RR  ( x  <  y  \/  x  =  y  \/  y  <  x )  <->  A. z  e.  RR DECID  z #  0 )
 
Theoremcndcap 15286* Real number trichotomy is equivalent to decidability of complex number apartness. (Contributed by Jim Kingdon, 10-Apr-2025.)
 |-  ( A. x  e.  RR  A. y  e.  RR  ( x  <  y  \/  x  =  y  \/  y  <  x )  <->  A. z  e.  CC  A. w  e.  CC DECID  z #  w )
 
Theoremdceqnconst 15287* Decidability of real number equality implies the existence of a certain non-constant function from real numbers to integers. Variation of Exercise 11.6(i) of [HoTT], p. (varies). See redcwlpo 15282 for more discussion of decidability of real number equality. (Contributed by BJ and Jim Kingdon, 24-Jun-2024.) (Revised by Jim Kingdon, 23-Jul-2024.)
 |-  ( A. x  e.  RR DECID  x  =  0  ->  E. f
 ( f : RR --> ZZ  /\  ( f `  0 )  =  0  /\  A. x  e.  RR+  ( f `  x )  =/=  0 ) )
 
Theoremdcapnconst 15288* Decidability of real number apartness implies the existence of a certain non-constant function from real numbers to integers. Variation of Exercise 11.6(i) of [HoTT], p. (varies). See trilpo 15270 for more discussion of decidability of real number apartness.

This is a weaker form of dceqnconst 15287 and in fact this theorem can be proved using dceqnconst 15287 as shown at dcapnconstALT 15289. (Contributed by BJ and Jim Kingdon, 24-Jun-2024.)

 |-  ( A. x  e.  RR DECID  x #  0 
 ->  E. f ( f : RR --> ZZ  /\  ( f `  0
 )  =  0  /\  A. x  e.  RR+  ( f `
  x )  =/=  0 ) )
 
TheoremdcapnconstALT 15289* Decidability of real number apartness implies the existence of a certain non-constant function from real numbers to integers. A proof of dcapnconst 15288 by means of dceqnconst 15287. (Contributed by Jim Kingdon, 27-Jul-2024.) (New usage is discouraged.) (Proof modification is discouraged.)
 |-  ( A. x  e.  RR DECID  x #  0 
 ->  E. f ( f : RR --> ZZ  /\  ( f `  0
 )  =  0  /\  A. x  e.  RR+  ( f `
  x )  =/=  0 ) )
 
Theoremnconstwlpolem0 15290* Lemma for nconstwlpo 15293. If all the terms of the series are zero, so is their sum. (Contributed by Jim Kingdon, 26-Jul-2024.)
 |-  ( ph  ->  G : NN --> { 0 ,  1 } )   &    |-  A  =  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i ) )   &    |-  ( ph  ->  A. x  e.  NN  ( G `  x )  =  0 )   =>    |-  ( ph  ->  A  =  0 )
 
Theoremnconstwlpolemgt0 15291* Lemma for nconstwlpo 15293. If one of the terms of series is positive, so is the sum. (Contributed by Jim Kingdon, 26-Jul-2024.)
 |-  ( ph  ->  G : NN --> { 0 ,  1 } )   &    |-  A  =  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i ) )   &    |-  ( ph  ->  E. x  e.  NN  ( G `  x )  =  1 )   =>    |-  ( ph  ->  0  <  A )
 
Theoremnconstwlpolem 15292* Lemma for nconstwlpo 15293. (Contributed by Jim Kingdon, 23-Jul-2024.)
 |-  ( ph  ->  F : RR --> ZZ )   &    |-  ( ph  ->  ( F `  0 )  =  0 )   &    |-  (
 ( ph  /\  x  e.  RR+ )  ->  ( F `
  x )  =/=  0 )   &    |-  ( ph  ->  G : NN --> { 0 ,  1 } )   &    |-  A  =  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i
 ) )  x.  ( G `  i ) )   =>    |-  ( ph  ->  ( A. y  e.  NN  ( G `  y )  =  0  \/  -.  A. y  e.  NN  ( G `  y )  =  0 ) )
 
Theoremnconstwlpo 15293* Existence of a certain non-constant function from reals to integers implies  om  e. WOmni (the Weak Limited Principle of Omniscience or WLPO). Based on Exercise 11.6(ii) of [HoTT], p. (varies). (Contributed by BJ and Jim Kingdon, 22-Jul-2024.)
 |-  ( ph  ->  F : RR --> ZZ )   &    |-  ( ph  ->  ( F `  0 )  =  0 )   &    |-  (
 ( ph  /\  x  e.  RR+ )  ->  ( F `
  x )  =/=  0 )   =>    |-  ( ph  ->  om  e. WOmni )
 
Theoremneapmkvlem 15294* Lemma for neapmkv 15295. The result, with a few hypotheses broken out for convenience. (Contributed by Jim Kingdon, 25-Jun-2024.)
 |-  ( ph  ->  F : NN --> { 0 ,  1 } )   &    |-  A  =  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( F `  i ) )   &    |-  (
 ( ph  /\  A  =/=  1 )  ->  A #  1
 )   =>    |-  ( ph  ->  ( -.  A. x  e.  NN  ( F `  x )  =  1  ->  E. x  e.  NN  ( F `  x )  =  0
 ) )
 
Theoremneapmkv 15295* If negated equality for real numbers implies apartness, Markov's Principle follows. Exercise 11.10 of [HoTT], p. (varies). (Contributed by Jim Kingdon, 24-Jun-2024.)
 |-  ( A. x  e.  RR  A. y  e.  RR  ( x  =/=  y  ->  x #  y )  ->  om  e. Markov )
 
Theoremneap0mkv 15296* The analytic Markov principle can be expressed either with two arbitrary real numbers, or one arbitrary number and zero. (Contributed by Jim Kingdon, 23-Feb-2025.)
 |-  ( A. x  e.  RR  A. y  e.  RR  ( x  =/=  y  ->  x #  y )  <->  A. x  e.  RR  ( x  =/=  0  ->  x #  0 ) )
 
Theoremltlenmkv 15297* If  < can be expressed as holding exactly when 
<_ holds and the values are not equal, then the analytic Markov's Principle applies. (To get the regular Markov's Principle, combine with neapmkv 15295). (Contributed by Jim Kingdon, 23-Feb-2025.)
 |-  ( A. x  e.  RR  A. y  e.  RR  ( x  <  y  <->  ( x  <_  y  /\  y  =/=  x ) )  ->  A. x  e.  RR  A. y  e. 
 RR  ( x  =/=  y  ->  x #  y
 ) )
 
13.3.8  Supremum and infimum
 
Theoremsupfz 15298 The supremum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Jim Kingdon, 15-Oct-2022.)
 |-  ( N  e.  ( ZZ>= `  M )  ->  sup (
 ( M ... N ) ,  ZZ ,  <  )  =  N )
 
Theoreminffz 15299 The infimum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Jim Kingdon, 15-Oct-2022.)
 |-  ( N  e.  ( ZZ>= `  M )  -> inf ( ( M ... N ) ,  ZZ ,  <  )  =  M )
 
13.3.9  Circle constant
 
Theoremtaupi 15300 Relationship between  tau and  pi. This can be seen as connecting the ratio of a circle's circumference to its radius and the ratio of a circle's circumference to its diameter. (Contributed by Jim Kingdon, 19-Feb-2019.) (Revised by AV, 1-Oct-2020.)
 |-  tau  =  ( 2  x.  pi )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15311
  Copyright terms: Public domain < Previous  Next >