ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plybss GIF version

Theorem plybss 15372
Description: Reverse closure of the parameter 𝑆 of the polynomial set function. (Contributed by Mario Carneiro, 22-Jul-2014.)
Assertion
Ref Expression
plybss (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)

Proof of Theorem plybss
Dummy variables 𝑎 𝑓 𝑛 𝑥 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ply 15369 . . 3 Poly = (𝑥 ∈ 𝒫 ℂ ↦ {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑥 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))})
21mptrcl 5690 . 2 (𝐹 ∈ (Poly‘𝑆) → 𝑆 ∈ 𝒫 ℂ)
32elpwid 3640 1 (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1375  wcel 2180  {cab 2195  wrex 2489  cun 3175  wss 3177  𝒫 cpw 3629  {csn 3646  cmpt 4124  cfv 5294  (class class class)co 5974  𝑚 cmap 6765  cc 7965  0cc0 7967   · cmul 7972  0cn0 9337  ...cfz 10172  cexp 10727  Σcsu 11830  Polycply 15367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-rab 2497  df-v 2781  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fv 5302  df-ply 15369
This theorem is referenced by:  elply  15373  plyf  15376  plyssc  15378  plyaddlem  15388  plymullem  15389  plysub  15392  plycolemc  15397  plycjlemc  15399  plycn  15401  plyreres  15403
  Copyright terms: Public domain W3C validator