ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plybss GIF version

Theorem plybss 15053
Description: Reverse closure of the parameter 𝑆 of the polynomial set function. (Contributed by Mario Carneiro, 22-Jul-2014.)
Assertion
Ref Expression
plybss (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)

Proof of Theorem plybss
Dummy variables 𝑎 𝑓 𝑛 𝑥 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ply 15050 . . 3 Poly = (𝑥 ∈ 𝒫 ℂ ↦ {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑥 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))})
21mptrcl 5647 . 2 (𝐹 ∈ (Poly‘𝑆) → 𝑆 ∈ 𝒫 ℂ)
32elpwid 3617 1 (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  {cab 2182  wrex 2476  cun 3155  wss 3157  𝒫 cpw 3606  {csn 3623  cmpt 4095  cfv 5259  (class class class)co 5925  𝑚 cmap 6716  cc 7894  0cc0 7896   · cmul 7901  0cn0 9266  ...cfz 10100  cexp 10647  Σcsu 11535  Polycply 15048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fv 5267  df-ply 15050
This theorem is referenced by:  elply  15054  plyf  15057  plyssc  15059  plyaddlem  15069  plymullem  15070  plysub  15073  plycolemc  15078  plycjlemc  15080  plycn  15082  plyreres  15084
  Copyright terms: Public domain W3C validator