ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plybss GIF version

Theorem plybss 15415
Description: Reverse closure of the parameter 𝑆 of the polynomial set function. (Contributed by Mario Carneiro, 22-Jul-2014.)
Assertion
Ref Expression
plybss (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)

Proof of Theorem plybss
Dummy variables 𝑎 𝑓 𝑛 𝑥 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ply 15412 . . 3 Poly = (𝑥 ∈ 𝒫 ℂ ↦ {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑥 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))})
21mptrcl 5719 . 2 (𝐹 ∈ (Poly‘𝑆) → 𝑆 ∈ 𝒫 ℂ)
32elpwid 3660 1 (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  {cab 2215  wrex 2509  cun 3195  wss 3197  𝒫 cpw 3649  {csn 3666  cmpt 4145  cfv 5318  (class class class)co 6007  𝑚 cmap 6803  cc 8005  0cc0 8007   · cmul 8012  0cn0 9377  ...cfz 10212  cexp 10768  Σcsu 11872  Polycply 15410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fv 5326  df-ply 15412
This theorem is referenced by:  elply  15416  plyf  15419  plyssc  15421  plyaddlem  15431  plymullem  15432  plysub  15435  plycolemc  15440  plycjlemc  15442  plycn  15444  plyreres  15446
  Copyright terms: Public domain W3C validator