ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plycjlemc Unicode version

Theorem plycjlemc 14930
Description: Lemma for plycj 14931. (Contributed by Mario Carneiro, 24-Jul-2014.) (Revised by Jim Kingdon, 22-Sep-2025.)
Hypotheses
Ref Expression
plycjlemc.n  |-  ( ph  ->  N  e.  NN0 )
plycjlem.2  |-  G  =  ( ( *  o.  F )  o.  *
)
plycjlemc.a  |-  ( ph  ->  A : NN0 --> ( S  u.  { 0 } ) )
plycjlemc.f  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
plycjlemc.p  |-  ( ph  ->  F  e.  (Poly `  S ) )
Assertion
Ref Expression
plycjlemc  |-  ( ph  ->  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( ( *  o.  A ) `
 k )  x.  ( z ^ k
) ) ) )
Distinct variable groups:    z, k, A   
k, F, z    k, N, z    ph, k, z    S, k, z
Allowed substitution hints:    G( z, k)

Proof of Theorem plycjlemc
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 plycjlem.2 . . 3  |-  G  =  ( ( *  o.  F )  o.  *
)
2 cjcl 10995 . . . . 5  |-  ( z  e.  CC  ->  (
* `  z )  e.  CC )
32adantl 277 . . . 4  |-  ( (
ph  /\  z  e.  CC )  ->  ( * `
 z )  e.  CC )
4 cjf 10994 . . . . . 6  |-  * : CC --> CC
54a1i 9 . . . . 5  |-  ( ph  ->  * : CC --> CC )
65feqmptd 5611 . . . 4  |-  ( ph  ->  *  =  ( z  e.  CC  |->  ( * `
 z ) ) )
7 0zd 9332 . . . . . . . 8  |-  ( ph  ->  0  e.  ZZ )
8 plycjlemc.n . . . . . . . . 9  |-  ( ph  ->  N  e.  NN0 )
98nn0zd 9440 . . . . . . . 8  |-  ( ph  ->  N  e.  ZZ )
107, 9fzfigd 10505 . . . . . . 7  |-  ( ph  ->  ( 0 ... N
)  e.  Fin )
1110adantr 276 . . . . . 6  |-  ( (
ph  /\  x  e.  CC )  ->  ( 0 ... N )  e. 
Fin )
12 plycjlemc.a . . . . . . . . . . 11  |-  ( ph  ->  A : NN0 --> ( S  u.  { 0 } ) )
13 plycjlemc.p . . . . . . . . . . . . 13  |-  ( ph  ->  F  e.  (Poly `  S ) )
14 plybss 14904 . . . . . . . . . . . . 13  |-  ( F  e.  (Poly `  S
)  ->  S  C_  CC )
1513, 14syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  S  C_  CC )
16 0cn 8013 . . . . . . . . . . . . 13  |-  0  e.  CC
17 snssi 3763 . . . . . . . . . . . . 13  |-  ( 0  e.  CC  ->  { 0 }  C_  CC )
1816, 17mp1i 10 . . . . . . . . . . . 12  |-  ( ph  ->  { 0 }  C_  CC )
1915, 18unssd 3336 . . . . . . . . . . 11  |-  ( ph  ->  ( S  u.  {
0 } )  C_  CC )
2012, 19fssd 5417 . . . . . . . . . 10  |-  ( ph  ->  A : NN0 --> CC )
2120adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  A : NN0 --> CC )
22 elfznn0 10183 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
2322adantl 277 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  k  e.  NN0 )
2421, 23ffvelcdmd 5695 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( A `  k )  e.  CC )
2524adantlr 477 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  ( A `  k )  e.  CC )
26 simplr 528 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  x  e.  CC )
2722adantl 277 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  k  e.  NN0 )
2826, 27expcld 10747 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
x ^ k )  e.  CC )
2925, 28mulcld 8042 . . . . . 6  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( A `  k
)  x.  ( x ^ k ) )  e.  CC )
3011, 29fsumcl 11546 . . . . 5  |-  ( (
ph  /\  x  e.  CC )  ->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( x ^ k
) )  e.  CC )
31 plycjlemc.f . . . . . 6  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
32 oveq1 5926 . . . . . . . . 9  |-  ( z  =  x  ->  (
z ^ k )  =  ( x ^
k ) )
3332oveq2d 5935 . . . . . . . 8  |-  ( z  =  x  ->  (
( A `  k
)  x.  ( z ^ k ) )  =  ( ( A `
 k )  x.  ( x ^ k
) ) )
3433sumeq2sdv 11516 . . . . . . 7  |-  ( z  =  x  ->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( x ^ k ) ) )
3534cbvmptv 4126 . . . . . 6  |-  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( z ^ k
) ) )  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( x ^ k ) ) )
3631, 35eqtrdi 2242 . . . . 5  |-  ( ph  ->  F  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( x ^ k
) ) ) )
37 fveq2 5555 . . . . 5  |-  ( z  =  sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
x ^ k ) )  ->  ( * `  z )  =  ( * `  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( x ^ k
) ) ) )
3830, 36, 6, 37fmptco 5725 . . . 4  |-  ( ph  ->  ( *  o.  F
)  =  ( x  e.  CC  |->  ( * `
 sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
x ^ k ) ) ) ) )
39 oveq1 5926 . . . . . . 7  |-  ( x  =  ( * `  z )  ->  (
x ^ k )  =  ( ( * `
 z ) ^
k ) )
4039oveq2d 5935 . . . . . 6  |-  ( x  =  ( * `  z )  ->  (
( A `  k
)  x.  ( x ^ k ) )  =  ( ( A `
 k )  x.  ( ( * `  z ) ^ k
) ) )
4140sumeq2sdv 11516 . . . . 5  |-  ( x  =  ( * `  z )  ->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( x ^ k
) )  =  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( ( * `  z ) ^ k ) ) )
4241fveq2d 5559 . . . 4  |-  ( x  =  ( * `  z )  ->  (
* `  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( x ^ k
) ) )  =  ( * `  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( ( * `  z ) ^ k ) ) ) )
433, 6, 38, 42fmptco 5725 . . 3  |-  ( ph  ->  ( ( *  o.  F )  o.  *
)  =  ( z  e.  CC  |->  ( * `
 sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
( * `  z
) ^ k ) ) ) ) )
441, 43eqtrid 2238 . 2  |-  ( ph  ->  G  =  ( z  e.  CC  |->  ( * `
 sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
( * `  z
) ^ k ) ) ) ) )
4510adantr 276 . . . . 5  |-  ( (
ph  /\  z  e.  CC )  ->  ( 0 ... N )  e. 
Fin )
4624adantlr 477 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  ( A `  k )  e.  CC )
472ad2antlr 489 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
* `  z )  e.  CC )
4822adantl 277 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  k  e.  NN0 )
4947, 48expcld 10747 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( * `  z
) ^ k )  e.  CC )
5046, 49mulcld 8042 . . . . 5  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( A `  k
)  x.  ( ( * `  z ) ^ k ) )  e.  CC )
5145, 50fsumcj 11620 . . . 4  |-  ( (
ph  /\  z  e.  CC )  ->  ( * `
 sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
( * `  z
) ^ k ) ) )  =  sum_ k  e.  ( 0 ... N ) ( * `  ( ( A `  k )  x.  ( ( * `
 z ) ^
k ) ) ) )
5246, 49cjmuld 11113 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
* `  ( ( A `  k )  x.  ( ( * `  z ) ^ k
) ) )  =  ( ( * `  ( A `  k ) )  x.  ( * `
 ( ( * `
 z ) ^
k ) ) ) )
5321adantlr 477 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  A : NN0 --> CC )
54 fvco3 5629 . . . . . . . 8  |-  ( ( A : NN0 --> CC  /\  k  e.  NN0 )  -> 
( ( *  o.  A ) `  k
)  =  ( * `
 ( A `  k ) ) )
5553, 48, 54syl2anc 411 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( *  o.  A
) `  k )  =  ( * `  ( A `  k ) ) )
5647, 48cjexpd 11105 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
* `  ( (
* `  z ) ^ k ) )  =  ( ( * `
 ( * `  z ) ) ^
k ) )
57 cjcj 11030 . . . . . . . . . 10  |-  ( z  e.  CC  ->  (
* `  ( * `  z ) )  =  z )
5857ad2antlr 489 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
* `  ( * `  z ) )  =  z )
5958oveq1d 5934 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( * `  (
* `  z )
) ^ k )  =  ( z ^
k ) )
6056, 59eqtr2d 2227 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
z ^ k )  =  ( * `  ( ( * `  z ) ^ k
) ) )
6155, 60oveq12d 5937 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( ( *  o.  A ) `  k
)  x.  ( z ^ k ) )  =  ( ( * `
 ( A `  k ) )  x.  ( * `  (
( * `  z
) ^ k ) ) ) )
6252, 61eqtr4d 2229 . . . . 5  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
* `  ( ( A `  k )  x.  ( ( * `  z ) ^ k
) ) )  =  ( ( ( *  o.  A ) `  k )  x.  (
z ^ k ) ) )
6362sumeq2dv 11514 . . . 4  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... N
) ( * `  ( ( A `  k )  x.  (
( * `  z
) ^ k ) ) )  =  sum_ k  e.  ( 0 ... N ) ( ( ( *  o.  A ) `  k
)  x.  ( z ^ k ) ) )
6451, 63eqtrd 2226 . . 3  |-  ( (
ph  /\  z  e.  CC )  ->  ( * `
 sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
( * `  z
) ^ k ) ) )  =  sum_ k  e.  ( 0 ... N ) ( ( ( *  o.  A ) `  k
)  x.  ( z ^ k ) ) )
6564mpteq2dva 4120 . 2  |-  ( ph  ->  ( z  e.  CC  |->  ( * `  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( ( * `  z ) ^ k ) ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( ( *  o.  A ) `  k
)  x.  ( z ^ k ) ) ) )
6644, 65eqtrd 2226 1  |-  ( ph  ->  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( ( *  o.  A ) `
 k )  x.  ( z ^ k
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164    u. cun 3152    C_ wss 3154   {csn 3619    |-> cmpt 4091    o. ccom 4664   -->wf 5251   ` cfv 5255  (class class class)co 5919   Fincfn 6796   CCcc 7872   0cc0 7874    x. cmul 7879   NN0cn0 9243   ...cfz 10077   ^cexp 10612   *ccj 10986   sum_csu 11499  Polycply 14899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-oadd 6475  df-er 6589  df-en 6797  df-dom 6798  df-fin 6799  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-exp 10613  df-ihash 10850  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-sumdc 11500  df-ply 14901
This theorem is referenced by:  plycj  14931
  Copyright terms: Public domain W3C validator