ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plycjlemc Unicode version

Theorem plycjlemc 15442
Description: Lemma for plycj 15443. (Contributed by Mario Carneiro, 24-Jul-2014.) (Revised by Jim Kingdon, 22-Sep-2025.)
Hypotheses
Ref Expression
plycjlemc.n  |-  ( ph  ->  N  e.  NN0 )
plycjlem.2  |-  G  =  ( ( *  o.  F )  o.  *
)
plycjlemc.a  |-  ( ph  ->  A : NN0 --> ( S  u.  { 0 } ) )
plycjlemc.f  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
plycjlemc.p  |-  ( ph  ->  F  e.  (Poly `  S ) )
Assertion
Ref Expression
plycjlemc  |-  ( ph  ->  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( ( *  o.  A ) `
 k )  x.  ( z ^ k
) ) ) )
Distinct variable groups:    z, k, A   
k, F, z    k, N, z    ph, k, z    S, k, z
Allowed substitution hints:    G( z, k)

Proof of Theorem plycjlemc
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 plycjlem.2 . . 3  |-  G  =  ( ( *  o.  F )  o.  *
)
2 cjcl 11367 . . . . 5  |-  ( z  e.  CC  ->  (
* `  z )  e.  CC )
32adantl 277 . . . 4  |-  ( (
ph  /\  z  e.  CC )  ->  ( * `
 z )  e.  CC )
4 cjf 11366 . . . . . 6  |-  * : CC --> CC
54a1i 9 . . . . 5  |-  ( ph  ->  * : CC --> CC )
65feqmptd 5689 . . . 4  |-  ( ph  ->  *  =  ( z  e.  CC  |->  ( * `
 z ) ) )
7 0zd 9466 . . . . . . . 8  |-  ( ph  ->  0  e.  ZZ )
8 plycjlemc.n . . . . . . . . 9  |-  ( ph  ->  N  e.  NN0 )
98nn0zd 9575 . . . . . . . 8  |-  ( ph  ->  N  e.  ZZ )
107, 9fzfigd 10661 . . . . . . 7  |-  ( ph  ->  ( 0 ... N
)  e.  Fin )
1110adantr 276 . . . . . 6  |-  ( (
ph  /\  x  e.  CC )  ->  ( 0 ... N )  e. 
Fin )
12 plycjlemc.a . . . . . . . . . . 11  |-  ( ph  ->  A : NN0 --> ( S  u.  { 0 } ) )
13 plycjlemc.p . . . . . . . . . . . . 13  |-  ( ph  ->  F  e.  (Poly `  S ) )
14 plybss 15415 . . . . . . . . . . . . 13  |-  ( F  e.  (Poly `  S
)  ->  S  C_  CC )
1513, 14syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  S  C_  CC )
16 0cn 8146 . . . . . . . . . . . . 13  |-  0  e.  CC
17 snssi 3812 . . . . . . . . . . . . 13  |-  ( 0  e.  CC  ->  { 0 }  C_  CC )
1816, 17mp1i 10 . . . . . . . . . . . 12  |-  ( ph  ->  { 0 }  C_  CC )
1915, 18unssd 3380 . . . . . . . . . . 11  |-  ( ph  ->  ( S  u.  {
0 } )  C_  CC )
2012, 19fssd 5486 . . . . . . . . . 10  |-  ( ph  ->  A : NN0 --> CC )
2120adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  A : NN0 --> CC )
22 elfznn0 10318 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
2322adantl 277 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  k  e.  NN0 )
2421, 23ffvelcdmd 5773 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( A `  k )  e.  CC )
2524adantlr 477 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  ( A `  k )  e.  CC )
26 simplr 528 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  x  e.  CC )
2722adantl 277 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  k  e.  NN0 )
2826, 27expcld 10903 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
x ^ k )  e.  CC )
2925, 28mulcld 8175 . . . . . 6  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( A `  k
)  x.  ( x ^ k ) )  e.  CC )
3011, 29fsumcl 11919 . . . . 5  |-  ( (
ph  /\  x  e.  CC )  ->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( x ^ k
) )  e.  CC )
31 plycjlemc.f . . . . . 6  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
32 oveq1 6014 . . . . . . . . 9  |-  ( z  =  x  ->  (
z ^ k )  =  ( x ^
k ) )
3332oveq2d 6023 . . . . . . . 8  |-  ( z  =  x  ->  (
( A `  k
)  x.  ( z ^ k ) )  =  ( ( A `
 k )  x.  ( x ^ k
) ) )
3433sumeq2sdv 11889 . . . . . . 7  |-  ( z  =  x  ->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( x ^ k ) ) )
3534cbvmptv 4180 . . . . . 6  |-  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( z ^ k
) ) )  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( x ^ k ) ) )
3631, 35eqtrdi 2278 . . . . 5  |-  ( ph  ->  F  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( x ^ k
) ) ) )
37 fveq2 5629 . . . . 5  |-  ( z  =  sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
x ^ k ) )  ->  ( * `  z )  =  ( * `  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( x ^ k
) ) ) )
3830, 36, 6, 37fmptco 5803 . . . 4  |-  ( ph  ->  ( *  o.  F
)  =  ( x  e.  CC  |->  ( * `
 sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
x ^ k ) ) ) ) )
39 oveq1 6014 . . . . . . 7  |-  ( x  =  ( * `  z )  ->  (
x ^ k )  =  ( ( * `
 z ) ^
k ) )
4039oveq2d 6023 . . . . . 6  |-  ( x  =  ( * `  z )  ->  (
( A `  k
)  x.  ( x ^ k ) )  =  ( ( A `
 k )  x.  ( ( * `  z ) ^ k
) ) )
4140sumeq2sdv 11889 . . . . 5  |-  ( x  =  ( * `  z )  ->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( x ^ k
) )  =  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( ( * `  z ) ^ k ) ) )
4241fveq2d 5633 . . . 4  |-  ( x  =  ( * `  z )  ->  (
* `  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( x ^ k
) ) )  =  ( * `  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( ( * `  z ) ^ k ) ) ) )
433, 6, 38, 42fmptco 5803 . . 3  |-  ( ph  ->  ( ( *  o.  F )  o.  *
)  =  ( z  e.  CC  |->  ( * `
 sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
( * `  z
) ^ k ) ) ) ) )
441, 43eqtrid 2274 . 2  |-  ( ph  ->  G  =  ( z  e.  CC  |->  ( * `
 sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
( * `  z
) ^ k ) ) ) ) )
4510adantr 276 . . . . 5  |-  ( (
ph  /\  z  e.  CC )  ->  ( 0 ... N )  e. 
Fin )
4624adantlr 477 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  ( A `  k )  e.  CC )
472ad2antlr 489 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
* `  z )  e.  CC )
4822adantl 277 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  k  e.  NN0 )
4947, 48expcld 10903 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( * `  z
) ^ k )  e.  CC )
5046, 49mulcld 8175 . . . . 5  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( A `  k
)  x.  ( ( * `  z ) ^ k ) )  e.  CC )
5145, 50fsumcj 11993 . . . 4  |-  ( (
ph  /\  z  e.  CC )  ->  ( * `
 sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
( * `  z
) ^ k ) ) )  =  sum_ k  e.  ( 0 ... N ) ( * `  ( ( A `  k )  x.  ( ( * `
 z ) ^
k ) ) ) )
5246, 49cjmuld 11485 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
* `  ( ( A `  k )  x.  ( ( * `  z ) ^ k
) ) )  =  ( ( * `  ( A `  k ) )  x.  ( * `
 ( ( * `
 z ) ^
k ) ) ) )
5321adantlr 477 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  A : NN0 --> CC )
54 fvco3 5707 . . . . . . . 8  |-  ( ( A : NN0 --> CC  /\  k  e.  NN0 )  -> 
( ( *  o.  A ) `  k
)  =  ( * `
 ( A `  k ) ) )
5553, 48, 54syl2anc 411 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( *  o.  A
) `  k )  =  ( * `  ( A `  k ) ) )
5647, 48cjexpd 11477 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
* `  ( (
* `  z ) ^ k ) )  =  ( ( * `
 ( * `  z ) ) ^
k ) )
57 cjcj 11402 . . . . . . . . . 10  |-  ( z  e.  CC  ->  (
* `  ( * `  z ) )  =  z )
5857ad2antlr 489 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
* `  ( * `  z ) )  =  z )
5958oveq1d 6022 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( * `  (
* `  z )
) ^ k )  =  ( z ^
k ) )
6056, 59eqtr2d 2263 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
z ^ k )  =  ( * `  ( ( * `  z ) ^ k
) ) )
6155, 60oveq12d 6025 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( ( *  o.  A ) `  k
)  x.  ( z ^ k ) )  =  ( ( * `
 ( A `  k ) )  x.  ( * `  (
( * `  z
) ^ k ) ) ) )
6252, 61eqtr4d 2265 . . . . 5  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
* `  ( ( A `  k )  x.  ( ( * `  z ) ^ k
) ) )  =  ( ( ( *  o.  A ) `  k )  x.  (
z ^ k ) ) )
6362sumeq2dv 11887 . . . 4  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... N
) ( * `  ( ( A `  k )  x.  (
( * `  z
) ^ k ) ) )  =  sum_ k  e.  ( 0 ... N ) ( ( ( *  o.  A ) `  k
)  x.  ( z ^ k ) ) )
6451, 63eqtrd 2262 . . 3  |-  ( (
ph  /\  z  e.  CC )  ->  ( * `
 sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
( * `  z
) ^ k ) ) )  =  sum_ k  e.  ( 0 ... N ) ( ( ( *  o.  A ) `  k
)  x.  ( z ^ k ) ) )
6564mpteq2dva 4174 . 2  |-  ( ph  ->  ( z  e.  CC  |->  ( * `  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( ( * `  z ) ^ k ) ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( ( *  o.  A ) `  k
)  x.  ( z ^ k ) ) ) )
6644, 65eqtrd 2262 1  |-  ( ph  ->  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( ( *  o.  A ) `
 k )  x.  ( z ^ k
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200    u. cun 3195    C_ wss 3197   {csn 3666    |-> cmpt 4145    o. ccom 4723   -->wf 5314   ` cfv 5318  (class class class)co 6007   Fincfn 6895   CCcc 8005   0cc0 8007    x. cmul 8012   NN0cn0 9377   ...cfz 10212   ^cexp 10768   *ccj 11358   sum_csu 11872  Polycply 15410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-frec 6543  df-1o 6568  df-oadd 6572  df-er 6688  df-en 6896  df-dom 6897  df-fin 6898  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-fz 10213  df-fzo 10347  df-seqfrec 10678  df-exp 10769  df-ihash 11006  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-clim 11798  df-sumdc 11873  df-ply 15412
This theorem is referenced by:  plycj  15443
  Copyright terms: Public domain W3C validator