ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plycjlemc Unicode version

Theorem plycjlemc 15399
Description: Lemma for plycj 15400. (Contributed by Mario Carneiro, 24-Jul-2014.) (Revised by Jim Kingdon, 22-Sep-2025.)
Hypotheses
Ref Expression
plycjlemc.n  |-  ( ph  ->  N  e.  NN0 )
plycjlem.2  |-  G  =  ( ( *  o.  F )  o.  *
)
plycjlemc.a  |-  ( ph  ->  A : NN0 --> ( S  u.  { 0 } ) )
plycjlemc.f  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
plycjlemc.p  |-  ( ph  ->  F  e.  (Poly `  S ) )
Assertion
Ref Expression
plycjlemc  |-  ( ph  ->  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( ( *  o.  A ) `
 k )  x.  ( z ^ k
) ) ) )
Distinct variable groups:    z, k, A   
k, F, z    k, N, z    ph, k, z    S, k, z
Allowed substitution hints:    G( z, k)

Proof of Theorem plycjlemc
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 plycjlem.2 . . 3  |-  G  =  ( ( *  o.  F )  o.  *
)
2 cjcl 11325 . . . . 5  |-  ( z  e.  CC  ->  (
* `  z )  e.  CC )
32adantl 277 . . . 4  |-  ( (
ph  /\  z  e.  CC )  ->  ( * `
 z )  e.  CC )
4 cjf 11324 . . . . . 6  |-  * : CC --> CC
54a1i 9 . . . . 5  |-  ( ph  ->  * : CC --> CC )
65feqmptd 5660 . . . 4  |-  ( ph  ->  *  =  ( z  e.  CC  |->  ( * `
 z ) ) )
7 0zd 9426 . . . . . . . 8  |-  ( ph  ->  0  e.  ZZ )
8 plycjlemc.n . . . . . . . . 9  |-  ( ph  ->  N  e.  NN0 )
98nn0zd 9535 . . . . . . . 8  |-  ( ph  ->  N  e.  ZZ )
107, 9fzfigd 10620 . . . . . . 7  |-  ( ph  ->  ( 0 ... N
)  e.  Fin )
1110adantr 276 . . . . . 6  |-  ( (
ph  /\  x  e.  CC )  ->  ( 0 ... N )  e. 
Fin )
12 plycjlemc.a . . . . . . . . . . 11  |-  ( ph  ->  A : NN0 --> ( S  u.  { 0 } ) )
13 plycjlemc.p . . . . . . . . . . . . 13  |-  ( ph  ->  F  e.  (Poly `  S ) )
14 plybss 15372 . . . . . . . . . . . . 13  |-  ( F  e.  (Poly `  S
)  ->  S  C_  CC )
1513, 14syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  S  C_  CC )
16 0cn 8106 . . . . . . . . . . . . 13  |-  0  e.  CC
17 snssi 3791 . . . . . . . . . . . . 13  |-  ( 0  e.  CC  ->  { 0 }  C_  CC )
1816, 17mp1i 10 . . . . . . . . . . . 12  |-  ( ph  ->  { 0 }  C_  CC )
1915, 18unssd 3360 . . . . . . . . . . 11  |-  ( ph  ->  ( S  u.  {
0 } )  C_  CC )
2012, 19fssd 5462 . . . . . . . . . 10  |-  ( ph  ->  A : NN0 --> CC )
2120adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  A : NN0 --> CC )
22 elfznn0 10278 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
2322adantl 277 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  k  e.  NN0 )
2421, 23ffvelcdmd 5744 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( A `  k )  e.  CC )
2524adantlr 477 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  ( A `  k )  e.  CC )
26 simplr 528 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  x  e.  CC )
2722adantl 277 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  k  e.  NN0 )
2826, 27expcld 10862 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
x ^ k )  e.  CC )
2925, 28mulcld 8135 . . . . . 6  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( A `  k
)  x.  ( x ^ k ) )  e.  CC )
3011, 29fsumcl 11877 . . . . 5  |-  ( (
ph  /\  x  e.  CC )  ->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( x ^ k
) )  e.  CC )
31 plycjlemc.f . . . . . 6  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
32 oveq1 5981 . . . . . . . . 9  |-  ( z  =  x  ->  (
z ^ k )  =  ( x ^
k ) )
3332oveq2d 5990 . . . . . . . 8  |-  ( z  =  x  ->  (
( A `  k
)  x.  ( z ^ k ) )  =  ( ( A `
 k )  x.  ( x ^ k
) ) )
3433sumeq2sdv 11847 . . . . . . 7  |-  ( z  =  x  ->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( x ^ k ) ) )
3534cbvmptv 4159 . . . . . 6  |-  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( z ^ k
) ) )  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( x ^ k ) ) )
3631, 35eqtrdi 2258 . . . . 5  |-  ( ph  ->  F  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( x ^ k
) ) ) )
37 fveq2 5603 . . . . 5  |-  ( z  =  sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
x ^ k ) )  ->  ( * `  z )  =  ( * `  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( x ^ k
) ) ) )
3830, 36, 6, 37fmptco 5774 . . . 4  |-  ( ph  ->  ( *  o.  F
)  =  ( x  e.  CC  |->  ( * `
 sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
x ^ k ) ) ) ) )
39 oveq1 5981 . . . . . . 7  |-  ( x  =  ( * `  z )  ->  (
x ^ k )  =  ( ( * `
 z ) ^
k ) )
4039oveq2d 5990 . . . . . 6  |-  ( x  =  ( * `  z )  ->  (
( A `  k
)  x.  ( x ^ k ) )  =  ( ( A `
 k )  x.  ( ( * `  z ) ^ k
) ) )
4140sumeq2sdv 11847 . . . . 5  |-  ( x  =  ( * `  z )  ->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( x ^ k
) )  =  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( ( * `  z ) ^ k ) ) )
4241fveq2d 5607 . . . 4  |-  ( x  =  ( * `  z )  ->  (
* `  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( x ^ k
) ) )  =  ( * `  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( ( * `  z ) ^ k ) ) ) )
433, 6, 38, 42fmptco 5774 . . 3  |-  ( ph  ->  ( ( *  o.  F )  o.  *
)  =  ( z  e.  CC  |->  ( * `
 sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
( * `  z
) ^ k ) ) ) ) )
441, 43eqtrid 2254 . 2  |-  ( ph  ->  G  =  ( z  e.  CC  |->  ( * `
 sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
( * `  z
) ^ k ) ) ) ) )
4510adantr 276 . . . . 5  |-  ( (
ph  /\  z  e.  CC )  ->  ( 0 ... N )  e. 
Fin )
4624adantlr 477 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  ( A `  k )  e.  CC )
472ad2antlr 489 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
* `  z )  e.  CC )
4822adantl 277 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  k  e.  NN0 )
4947, 48expcld 10862 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( * `  z
) ^ k )  e.  CC )
5046, 49mulcld 8135 . . . . 5  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( A `  k
)  x.  ( ( * `  z ) ^ k ) )  e.  CC )
5145, 50fsumcj 11951 . . . 4  |-  ( (
ph  /\  z  e.  CC )  ->  ( * `
 sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
( * `  z
) ^ k ) ) )  =  sum_ k  e.  ( 0 ... N ) ( * `  ( ( A `  k )  x.  ( ( * `
 z ) ^
k ) ) ) )
5246, 49cjmuld 11443 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
* `  ( ( A `  k )  x.  ( ( * `  z ) ^ k
) ) )  =  ( ( * `  ( A `  k ) )  x.  ( * `
 ( ( * `
 z ) ^
k ) ) ) )
5321adantlr 477 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  A : NN0 --> CC )
54 fvco3 5678 . . . . . . . 8  |-  ( ( A : NN0 --> CC  /\  k  e.  NN0 )  -> 
( ( *  o.  A ) `  k
)  =  ( * `
 ( A `  k ) ) )
5553, 48, 54syl2anc 411 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( *  o.  A
) `  k )  =  ( * `  ( A `  k ) ) )
5647, 48cjexpd 11435 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
* `  ( (
* `  z ) ^ k ) )  =  ( ( * `
 ( * `  z ) ) ^
k ) )
57 cjcj 11360 . . . . . . . . . 10  |-  ( z  e.  CC  ->  (
* `  ( * `  z ) )  =  z )
5857ad2antlr 489 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
* `  ( * `  z ) )  =  z )
5958oveq1d 5989 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( * `  (
* `  z )
) ^ k )  =  ( z ^
k ) )
6056, 59eqtr2d 2243 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
z ^ k )  =  ( * `  ( ( * `  z ) ^ k
) ) )
6155, 60oveq12d 5992 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( ( *  o.  A ) `  k
)  x.  ( z ^ k ) )  =  ( ( * `
 ( A `  k ) )  x.  ( * `  (
( * `  z
) ^ k ) ) ) )
6252, 61eqtr4d 2245 . . . . 5  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
* `  ( ( A `  k )  x.  ( ( * `  z ) ^ k
) ) )  =  ( ( ( *  o.  A ) `  k )  x.  (
z ^ k ) ) )
6362sumeq2dv 11845 . . . 4  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... N
) ( * `  ( ( A `  k )  x.  (
( * `  z
) ^ k ) ) )  =  sum_ k  e.  ( 0 ... N ) ( ( ( *  o.  A ) `  k
)  x.  ( z ^ k ) ) )
6451, 63eqtrd 2242 . . 3  |-  ( (
ph  /\  z  e.  CC )  ->  ( * `
 sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
( * `  z
) ^ k ) ) )  =  sum_ k  e.  ( 0 ... N ) ( ( ( *  o.  A ) `  k
)  x.  ( z ^ k ) ) )
6564mpteq2dva 4153 . 2  |-  ( ph  ->  ( z  e.  CC  |->  ( * `  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( ( * `  z ) ^ k ) ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( ( *  o.  A ) `  k
)  x.  ( z ^ k ) ) ) )
6644, 65eqtrd 2242 1  |-  ( ph  ->  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( ( *  o.  A ) `
 k )  x.  ( z ^ k
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1375    e. wcel 2180    u. cun 3175    C_ wss 3177   {csn 3646    |-> cmpt 4124    o. ccom 4700   -->wf 5290   ` cfv 5294  (class class class)co 5974   Fincfn 6857   CCcc 7965   0cc0 7967    x. cmul 7972   NN0cn0 9337   ...cfz 10172   ^cexp 10727   *ccj 11316   sum_csu 11830  Polycply 15367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-frec 6507  df-1o 6532  df-oadd 6536  df-er 6650  df-en 6858  df-dom 6859  df-fin 6860  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-fz 10173  df-fzo 10307  df-seqfrec 10637  df-exp 10728  df-ihash 10965  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-clim 11756  df-sumdc 11831  df-ply 15369
This theorem is referenced by:  plycj  15400
  Copyright terms: Public domain W3C validator