ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plycjlemc Unicode version

Theorem plycjlemc 15276
Description: Lemma for plycj 15277. (Contributed by Mario Carneiro, 24-Jul-2014.) (Revised by Jim Kingdon, 22-Sep-2025.)
Hypotheses
Ref Expression
plycjlemc.n  |-  ( ph  ->  N  e.  NN0 )
plycjlem.2  |-  G  =  ( ( *  o.  F )  o.  *
)
plycjlemc.a  |-  ( ph  ->  A : NN0 --> ( S  u.  { 0 } ) )
plycjlemc.f  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
plycjlemc.p  |-  ( ph  ->  F  e.  (Poly `  S ) )
Assertion
Ref Expression
plycjlemc  |-  ( ph  ->  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( ( *  o.  A ) `
 k )  x.  ( z ^ k
) ) ) )
Distinct variable groups:    z, k, A   
k, F, z    k, N, z    ph, k, z    S, k, z
Allowed substitution hints:    G( z, k)

Proof of Theorem plycjlemc
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 plycjlem.2 . . 3  |-  G  =  ( ( *  o.  F )  o.  *
)
2 cjcl 11203 . . . . 5  |-  ( z  e.  CC  ->  (
* `  z )  e.  CC )
32adantl 277 . . . 4  |-  ( (
ph  /\  z  e.  CC )  ->  ( * `
 z )  e.  CC )
4 cjf 11202 . . . . . 6  |-  * : CC --> CC
54a1i 9 . . . . 5  |-  ( ph  ->  * : CC --> CC )
65feqmptd 5639 . . . 4  |-  ( ph  ->  *  =  ( z  e.  CC  |->  ( * `
 z ) ) )
7 0zd 9391 . . . . . . . 8  |-  ( ph  ->  0  e.  ZZ )
8 plycjlemc.n . . . . . . . . 9  |-  ( ph  ->  N  e.  NN0 )
98nn0zd 9500 . . . . . . . 8  |-  ( ph  ->  N  e.  ZZ )
107, 9fzfigd 10583 . . . . . . 7  |-  ( ph  ->  ( 0 ... N
)  e.  Fin )
1110adantr 276 . . . . . 6  |-  ( (
ph  /\  x  e.  CC )  ->  ( 0 ... N )  e. 
Fin )
12 plycjlemc.a . . . . . . . . . . 11  |-  ( ph  ->  A : NN0 --> ( S  u.  { 0 } ) )
13 plycjlemc.p . . . . . . . . . . . . 13  |-  ( ph  ->  F  e.  (Poly `  S ) )
14 plybss 15249 . . . . . . . . . . . . 13  |-  ( F  e.  (Poly `  S
)  ->  S  C_  CC )
1513, 14syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  S  C_  CC )
16 0cn 8071 . . . . . . . . . . . . 13  |-  0  e.  CC
17 snssi 3779 . . . . . . . . . . . . 13  |-  ( 0  e.  CC  ->  { 0 }  C_  CC )
1816, 17mp1i 10 . . . . . . . . . . . 12  |-  ( ph  ->  { 0 }  C_  CC )
1915, 18unssd 3350 . . . . . . . . . . 11  |-  ( ph  ->  ( S  u.  {
0 } )  C_  CC )
2012, 19fssd 5444 . . . . . . . . . 10  |-  ( ph  ->  A : NN0 --> CC )
2120adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  A : NN0 --> CC )
22 elfznn0 10243 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
2322adantl 277 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  k  e.  NN0 )
2421, 23ffvelcdmd 5723 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( A `  k )  e.  CC )
2524adantlr 477 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  ( A `  k )  e.  CC )
26 simplr 528 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  x  e.  CC )
2722adantl 277 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  k  e.  NN0 )
2826, 27expcld 10825 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
x ^ k )  e.  CC )
2925, 28mulcld 8100 . . . . . 6  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( A `  k
)  x.  ( x ^ k ) )  e.  CC )
3011, 29fsumcl 11755 . . . . 5  |-  ( (
ph  /\  x  e.  CC )  ->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( x ^ k
) )  e.  CC )
31 plycjlemc.f . . . . . 6  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
32 oveq1 5958 . . . . . . . . 9  |-  ( z  =  x  ->  (
z ^ k )  =  ( x ^
k ) )
3332oveq2d 5967 . . . . . . . 8  |-  ( z  =  x  ->  (
( A `  k
)  x.  ( z ^ k ) )  =  ( ( A `
 k )  x.  ( x ^ k
) ) )
3433sumeq2sdv 11725 . . . . . . 7  |-  ( z  =  x  ->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( x ^ k ) ) )
3534cbvmptv 4144 . . . . . 6  |-  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( z ^ k
) ) )  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( x ^ k ) ) )
3631, 35eqtrdi 2255 . . . . 5  |-  ( ph  ->  F  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( x ^ k
) ) ) )
37 fveq2 5583 . . . . 5  |-  ( z  =  sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
x ^ k ) )  ->  ( * `  z )  =  ( * `  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( x ^ k
) ) ) )
3830, 36, 6, 37fmptco 5753 . . . 4  |-  ( ph  ->  ( *  o.  F
)  =  ( x  e.  CC  |->  ( * `
 sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
x ^ k ) ) ) ) )
39 oveq1 5958 . . . . . . 7  |-  ( x  =  ( * `  z )  ->  (
x ^ k )  =  ( ( * `
 z ) ^
k ) )
4039oveq2d 5967 . . . . . 6  |-  ( x  =  ( * `  z )  ->  (
( A `  k
)  x.  ( x ^ k ) )  =  ( ( A `
 k )  x.  ( ( * `  z ) ^ k
) ) )
4140sumeq2sdv 11725 . . . . 5  |-  ( x  =  ( * `  z )  ->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( x ^ k
) )  =  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( ( * `  z ) ^ k ) ) )
4241fveq2d 5587 . . . 4  |-  ( x  =  ( * `  z )  ->  (
* `  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( x ^ k
) ) )  =  ( * `  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( ( * `  z ) ^ k ) ) ) )
433, 6, 38, 42fmptco 5753 . . 3  |-  ( ph  ->  ( ( *  o.  F )  o.  *
)  =  ( z  e.  CC  |->  ( * `
 sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
( * `  z
) ^ k ) ) ) ) )
441, 43eqtrid 2251 . 2  |-  ( ph  ->  G  =  ( z  e.  CC  |->  ( * `
 sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
( * `  z
) ^ k ) ) ) ) )
4510adantr 276 . . . . 5  |-  ( (
ph  /\  z  e.  CC )  ->  ( 0 ... N )  e. 
Fin )
4624adantlr 477 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  ( A `  k )  e.  CC )
472ad2antlr 489 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
* `  z )  e.  CC )
4822adantl 277 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  k  e.  NN0 )
4947, 48expcld 10825 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( * `  z
) ^ k )  e.  CC )
5046, 49mulcld 8100 . . . . 5  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( A `  k
)  x.  ( ( * `  z ) ^ k ) )  e.  CC )
5145, 50fsumcj 11829 . . . 4  |-  ( (
ph  /\  z  e.  CC )  ->  ( * `
 sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
( * `  z
) ^ k ) ) )  =  sum_ k  e.  ( 0 ... N ) ( * `  ( ( A `  k )  x.  ( ( * `
 z ) ^
k ) ) ) )
5246, 49cjmuld 11321 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
* `  ( ( A `  k )  x.  ( ( * `  z ) ^ k
) ) )  =  ( ( * `  ( A `  k ) )  x.  ( * `
 ( ( * `
 z ) ^
k ) ) ) )
5321adantlr 477 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  A : NN0 --> CC )
54 fvco3 5657 . . . . . . . 8  |-  ( ( A : NN0 --> CC  /\  k  e.  NN0 )  -> 
( ( *  o.  A ) `  k
)  =  ( * `
 ( A `  k ) ) )
5553, 48, 54syl2anc 411 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( *  o.  A
) `  k )  =  ( * `  ( A `  k ) ) )
5647, 48cjexpd 11313 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
* `  ( (
* `  z ) ^ k ) )  =  ( ( * `
 ( * `  z ) ) ^
k ) )
57 cjcj 11238 . . . . . . . . . 10  |-  ( z  e.  CC  ->  (
* `  ( * `  z ) )  =  z )
5857ad2antlr 489 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
* `  ( * `  z ) )  =  z )
5958oveq1d 5966 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( * `  (
* `  z )
) ^ k )  =  ( z ^
k ) )
6056, 59eqtr2d 2240 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
z ^ k )  =  ( * `  ( ( * `  z ) ^ k
) ) )
6155, 60oveq12d 5969 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( ( *  o.  A ) `  k
)  x.  ( z ^ k ) )  =  ( ( * `
 ( A `  k ) )  x.  ( * `  (
( * `  z
) ^ k ) ) ) )
6252, 61eqtr4d 2242 . . . . 5  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
* `  ( ( A `  k )  x.  ( ( * `  z ) ^ k
) ) )  =  ( ( ( *  o.  A ) `  k )  x.  (
z ^ k ) ) )
6362sumeq2dv 11723 . . . 4  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... N
) ( * `  ( ( A `  k )  x.  (
( * `  z
) ^ k ) ) )  =  sum_ k  e.  ( 0 ... N ) ( ( ( *  o.  A ) `  k
)  x.  ( z ^ k ) ) )
6451, 63eqtrd 2239 . . 3  |-  ( (
ph  /\  z  e.  CC )  ->  ( * `
 sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
( * `  z
) ^ k ) ) )  =  sum_ k  e.  ( 0 ... N ) ( ( ( *  o.  A ) `  k
)  x.  ( z ^ k ) ) )
6564mpteq2dva 4138 . 2  |-  ( ph  ->  ( z  e.  CC  |->  ( * `  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( ( * `  z ) ^ k ) ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( ( *  o.  A ) `  k
)  x.  ( z ^ k ) ) ) )
6644, 65eqtrd 2239 1  |-  ( ph  ->  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( ( *  o.  A ) `
 k )  x.  ( z ^ k
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177    u. cun 3165    C_ wss 3167   {csn 3634    |-> cmpt 4109    o. ccom 4683   -->wf 5272   ` cfv 5276  (class class class)co 5951   Fincfn 6834   CCcc 7930   0cc0 7932    x. cmul 7937   NN0cn0 9302   ...cfz 10137   ^cexp 10690   *ccj 11194   sum_csu 11708  Polycply 15244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-isom 5285  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-frec 6484  df-1o 6509  df-oadd 6513  df-er 6627  df-en 6835  df-dom 6836  df-fin 6837  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-n0 9303  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-fz 10138  df-fzo 10272  df-seqfrec 10600  df-exp 10691  df-ihash 10928  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-clim 11634  df-sumdc 11709  df-ply 15246
This theorem is referenced by:  plycj  15277
  Copyright terms: Public domain W3C validator