| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > plycjlemc | Unicode version | ||
| Description: Lemma for plycj 15443. (Contributed by Mario Carneiro, 24-Jul-2014.) (Revised by Jim Kingdon, 22-Sep-2025.) |
| Ref | Expression |
|---|---|
| plycjlemc.n |
|
| plycjlem.2 |
|
| plycjlemc.a |
|
| plycjlemc.f |
|
| plycjlemc.p |
|
| Ref | Expression |
|---|---|
| plycjlemc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | plycjlem.2 |
. . 3
| |
| 2 | cjcl 11367 |
. . . . 5
| |
| 3 | 2 | adantl 277 |
. . . 4
|
| 4 | cjf 11366 |
. . . . . 6
| |
| 5 | 4 | a1i 9 |
. . . . 5
|
| 6 | 5 | feqmptd 5689 |
. . . 4
|
| 7 | 0zd 9466 |
. . . . . . . 8
| |
| 8 | plycjlemc.n |
. . . . . . . . 9
| |
| 9 | 8 | nn0zd 9575 |
. . . . . . . 8
|
| 10 | 7, 9 | fzfigd 10661 |
. . . . . . 7
|
| 11 | 10 | adantr 276 |
. . . . . 6
|
| 12 | plycjlemc.a |
. . . . . . . . . . 11
| |
| 13 | plycjlemc.p |
. . . . . . . . . . . . 13
| |
| 14 | plybss 15415 |
. . . . . . . . . . . . 13
| |
| 15 | 13, 14 | syl 14 |
. . . . . . . . . . . 12
|
| 16 | 0cn 8146 |
. . . . . . . . . . . . 13
| |
| 17 | snssi 3812 |
. . . . . . . . . . . . 13
| |
| 18 | 16, 17 | mp1i 10 |
. . . . . . . . . . . 12
|
| 19 | 15, 18 | unssd 3380 |
. . . . . . . . . . 11
|
| 20 | 12, 19 | fssd 5486 |
. . . . . . . . . 10
|
| 21 | 20 | adantr 276 |
. . . . . . . . 9
|
| 22 | elfznn0 10318 |
. . . . . . . . . 10
| |
| 23 | 22 | adantl 277 |
. . . . . . . . 9
|
| 24 | 21, 23 | ffvelcdmd 5773 |
. . . . . . . 8
|
| 25 | 24 | adantlr 477 |
. . . . . . 7
|
| 26 | simplr 528 |
. . . . . . . 8
| |
| 27 | 22 | adantl 277 |
. . . . . . . 8
|
| 28 | 26, 27 | expcld 10903 |
. . . . . . 7
|
| 29 | 25, 28 | mulcld 8175 |
. . . . . 6
|
| 30 | 11, 29 | fsumcl 11919 |
. . . . 5
|
| 31 | plycjlemc.f |
. . . . . 6
| |
| 32 | oveq1 6014 |
. . . . . . . . 9
| |
| 33 | 32 | oveq2d 6023 |
. . . . . . . 8
|
| 34 | 33 | sumeq2sdv 11889 |
. . . . . . 7
|
| 35 | 34 | cbvmptv 4180 |
. . . . . 6
|
| 36 | 31, 35 | eqtrdi 2278 |
. . . . 5
|
| 37 | fveq2 5629 |
. . . . 5
| |
| 38 | 30, 36, 6, 37 | fmptco 5803 |
. . . 4
|
| 39 | oveq1 6014 |
. . . . . . 7
| |
| 40 | 39 | oveq2d 6023 |
. . . . . 6
|
| 41 | 40 | sumeq2sdv 11889 |
. . . . 5
|
| 42 | 41 | fveq2d 5633 |
. . . 4
|
| 43 | 3, 6, 38, 42 | fmptco 5803 |
. . 3
|
| 44 | 1, 43 | eqtrid 2274 |
. 2
|
| 45 | 10 | adantr 276 |
. . . . 5
|
| 46 | 24 | adantlr 477 |
. . . . . 6
|
| 47 | 2 | ad2antlr 489 |
. . . . . . 7
|
| 48 | 22 | adantl 277 |
. . . . . . 7
|
| 49 | 47, 48 | expcld 10903 |
. . . . . 6
|
| 50 | 46, 49 | mulcld 8175 |
. . . . 5
|
| 51 | 45, 50 | fsumcj 11993 |
. . . 4
|
| 52 | 46, 49 | cjmuld 11485 |
. . . . . 6
|
| 53 | 21 | adantlr 477 |
. . . . . . . 8
|
| 54 | fvco3 5707 |
. . . . . . . 8
| |
| 55 | 53, 48, 54 | syl2anc 411 |
. . . . . . 7
|
| 56 | 47, 48 | cjexpd 11477 |
. . . . . . . 8
|
| 57 | cjcj 11402 |
. . . . . . . . . 10
| |
| 58 | 57 | ad2antlr 489 |
. . . . . . . . 9
|
| 59 | 58 | oveq1d 6022 |
. . . . . . . 8
|
| 60 | 56, 59 | eqtr2d 2263 |
. . . . . . 7
|
| 61 | 55, 60 | oveq12d 6025 |
. . . . . 6
|
| 62 | 52, 61 | eqtr4d 2265 |
. . . . 5
|
| 63 | 62 | sumeq2dv 11887 |
. . . 4
|
| 64 | 51, 63 | eqtrd 2262 |
. . 3
|
| 65 | 64 | mpteq2dva 4174 |
. 2
|
| 66 | 44, 65 | eqtrd 2262 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-arch 8126 ax-caucvg 8127 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-irdg 6522 df-frec 6543 df-1o 6568 df-oadd 6572 df-er 6688 df-en 6896 df-dom 6897 df-fin 6898 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-n0 9378 df-z 9455 df-uz 9731 df-q 9823 df-rp 9858 df-fz 10213 df-fzo 10347 df-seqfrec 10678 df-exp 10769 df-ihash 11006 df-cj 11361 df-re 11362 df-im 11363 df-rsqrt 11517 df-abs 11518 df-clim 11798 df-sumdc 11873 df-ply 15412 |
| This theorem is referenced by: plycj 15443 |
| Copyright terms: Public domain | W3C validator |