ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plycjlemc Unicode version

Theorem plycjlemc 14996
Description: Lemma for plycj 14997. (Contributed by Mario Carneiro, 24-Jul-2014.) (Revised by Jim Kingdon, 22-Sep-2025.)
Hypotheses
Ref Expression
plycjlemc.n  |-  ( ph  ->  N  e.  NN0 )
plycjlem.2  |-  G  =  ( ( *  o.  F )  o.  *
)
plycjlemc.a  |-  ( ph  ->  A : NN0 --> ( S  u.  { 0 } ) )
plycjlemc.f  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
plycjlemc.p  |-  ( ph  ->  F  e.  (Poly `  S ) )
Assertion
Ref Expression
plycjlemc  |-  ( ph  ->  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( ( *  o.  A ) `
 k )  x.  ( z ^ k
) ) ) )
Distinct variable groups:    z, k, A   
k, F, z    k, N, z    ph, k, z    S, k, z
Allowed substitution hints:    G( z, k)

Proof of Theorem plycjlemc
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 plycjlem.2 . . 3  |-  G  =  ( ( *  o.  F )  o.  *
)
2 cjcl 11013 . . . . 5  |-  ( z  e.  CC  ->  (
* `  z )  e.  CC )
32adantl 277 . . . 4  |-  ( (
ph  /\  z  e.  CC )  ->  ( * `
 z )  e.  CC )
4 cjf 11012 . . . . . 6  |-  * : CC --> CC
54a1i 9 . . . . 5  |-  ( ph  ->  * : CC --> CC )
65feqmptd 5614 . . . 4  |-  ( ph  ->  *  =  ( z  e.  CC  |->  ( * `
 z ) ) )
7 0zd 9338 . . . . . . . 8  |-  ( ph  ->  0  e.  ZZ )
8 plycjlemc.n . . . . . . . . 9  |-  ( ph  ->  N  e.  NN0 )
98nn0zd 9446 . . . . . . . 8  |-  ( ph  ->  N  e.  ZZ )
107, 9fzfigd 10523 . . . . . . 7  |-  ( ph  ->  ( 0 ... N
)  e.  Fin )
1110adantr 276 . . . . . 6  |-  ( (
ph  /\  x  e.  CC )  ->  ( 0 ... N )  e. 
Fin )
12 plycjlemc.a . . . . . . . . . . 11  |-  ( ph  ->  A : NN0 --> ( S  u.  { 0 } ) )
13 plycjlemc.p . . . . . . . . . . . . 13  |-  ( ph  ->  F  e.  (Poly `  S ) )
14 plybss 14969 . . . . . . . . . . . . 13  |-  ( F  e.  (Poly `  S
)  ->  S  C_  CC )
1513, 14syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  S  C_  CC )
16 0cn 8018 . . . . . . . . . . . . 13  |-  0  e.  CC
17 snssi 3766 . . . . . . . . . . . . 13  |-  ( 0  e.  CC  ->  { 0 }  C_  CC )
1816, 17mp1i 10 . . . . . . . . . . . 12  |-  ( ph  ->  { 0 }  C_  CC )
1915, 18unssd 3339 . . . . . . . . . . 11  |-  ( ph  ->  ( S  u.  {
0 } )  C_  CC )
2012, 19fssd 5420 . . . . . . . . . 10  |-  ( ph  ->  A : NN0 --> CC )
2120adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  A : NN0 --> CC )
22 elfznn0 10189 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
2322adantl 277 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  k  e.  NN0 )
2421, 23ffvelcdmd 5698 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( A `  k )  e.  CC )
2524adantlr 477 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  ( A `  k )  e.  CC )
26 simplr 528 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  x  e.  CC )
2722adantl 277 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  k  e.  NN0 )
2826, 27expcld 10765 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
x ^ k )  e.  CC )
2925, 28mulcld 8047 . . . . . 6  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( A `  k
)  x.  ( x ^ k ) )  e.  CC )
3011, 29fsumcl 11565 . . . . 5  |-  ( (
ph  /\  x  e.  CC )  ->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( x ^ k
) )  e.  CC )
31 plycjlemc.f . . . . . 6  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
32 oveq1 5929 . . . . . . . . 9  |-  ( z  =  x  ->  (
z ^ k )  =  ( x ^
k ) )
3332oveq2d 5938 . . . . . . . 8  |-  ( z  =  x  ->  (
( A `  k
)  x.  ( z ^ k ) )  =  ( ( A `
 k )  x.  ( x ^ k
) ) )
3433sumeq2sdv 11535 . . . . . . 7  |-  ( z  =  x  ->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( x ^ k ) ) )
3534cbvmptv 4129 . . . . . 6  |-  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( z ^ k
) ) )  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( x ^ k ) ) )
3631, 35eqtrdi 2245 . . . . 5  |-  ( ph  ->  F  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( x ^ k
) ) ) )
37 fveq2 5558 . . . . 5  |-  ( z  =  sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
x ^ k ) )  ->  ( * `  z )  =  ( * `  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( x ^ k
) ) ) )
3830, 36, 6, 37fmptco 5728 . . . 4  |-  ( ph  ->  ( *  o.  F
)  =  ( x  e.  CC  |->  ( * `
 sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
x ^ k ) ) ) ) )
39 oveq1 5929 . . . . . . 7  |-  ( x  =  ( * `  z )  ->  (
x ^ k )  =  ( ( * `
 z ) ^
k ) )
4039oveq2d 5938 . . . . . 6  |-  ( x  =  ( * `  z )  ->  (
( A `  k
)  x.  ( x ^ k ) )  =  ( ( A `
 k )  x.  ( ( * `  z ) ^ k
) ) )
4140sumeq2sdv 11535 . . . . 5  |-  ( x  =  ( * `  z )  ->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( x ^ k
) )  =  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( ( * `  z ) ^ k ) ) )
4241fveq2d 5562 . . . 4  |-  ( x  =  ( * `  z )  ->  (
* `  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( x ^ k
) ) )  =  ( * `  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( ( * `  z ) ^ k ) ) ) )
433, 6, 38, 42fmptco 5728 . . 3  |-  ( ph  ->  ( ( *  o.  F )  o.  *
)  =  ( z  e.  CC  |->  ( * `
 sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
( * `  z
) ^ k ) ) ) ) )
441, 43eqtrid 2241 . 2  |-  ( ph  ->  G  =  ( z  e.  CC  |->  ( * `
 sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
( * `  z
) ^ k ) ) ) ) )
4510adantr 276 . . . . 5  |-  ( (
ph  /\  z  e.  CC )  ->  ( 0 ... N )  e. 
Fin )
4624adantlr 477 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  ( A `  k )  e.  CC )
472ad2antlr 489 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
* `  z )  e.  CC )
4822adantl 277 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  k  e.  NN0 )
4947, 48expcld 10765 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( * `  z
) ^ k )  e.  CC )
5046, 49mulcld 8047 . . . . 5  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( A `  k
)  x.  ( ( * `  z ) ^ k ) )  e.  CC )
5145, 50fsumcj 11639 . . . 4  |-  ( (
ph  /\  z  e.  CC )  ->  ( * `
 sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
( * `  z
) ^ k ) ) )  =  sum_ k  e.  ( 0 ... N ) ( * `  ( ( A `  k )  x.  ( ( * `
 z ) ^
k ) ) ) )
5246, 49cjmuld 11131 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
* `  ( ( A `  k )  x.  ( ( * `  z ) ^ k
) ) )  =  ( ( * `  ( A `  k ) )  x.  ( * `
 ( ( * `
 z ) ^
k ) ) ) )
5321adantlr 477 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  A : NN0 --> CC )
54 fvco3 5632 . . . . . . . 8  |-  ( ( A : NN0 --> CC  /\  k  e.  NN0 )  -> 
( ( *  o.  A ) `  k
)  =  ( * `
 ( A `  k ) ) )
5553, 48, 54syl2anc 411 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( *  o.  A
) `  k )  =  ( * `  ( A `  k ) ) )
5647, 48cjexpd 11123 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
* `  ( (
* `  z ) ^ k ) )  =  ( ( * `
 ( * `  z ) ) ^
k ) )
57 cjcj 11048 . . . . . . . . . 10  |-  ( z  e.  CC  ->  (
* `  ( * `  z ) )  =  z )
5857ad2antlr 489 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
* `  ( * `  z ) )  =  z )
5958oveq1d 5937 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( * `  (
* `  z )
) ^ k )  =  ( z ^
k ) )
6056, 59eqtr2d 2230 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
z ^ k )  =  ( * `  ( ( * `  z ) ^ k
) ) )
6155, 60oveq12d 5940 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( ( *  o.  A ) `  k
)  x.  ( z ^ k ) )  =  ( ( * `
 ( A `  k ) )  x.  ( * `  (
( * `  z
) ^ k ) ) ) )
6252, 61eqtr4d 2232 . . . . 5  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
* `  ( ( A `  k )  x.  ( ( * `  z ) ^ k
) ) )  =  ( ( ( *  o.  A ) `  k )  x.  (
z ^ k ) ) )
6362sumeq2dv 11533 . . . 4  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... N
) ( * `  ( ( A `  k )  x.  (
( * `  z
) ^ k ) ) )  =  sum_ k  e.  ( 0 ... N ) ( ( ( *  o.  A ) `  k
)  x.  ( z ^ k ) ) )
6451, 63eqtrd 2229 . . 3  |-  ( (
ph  /\  z  e.  CC )  ->  ( * `
 sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
( * `  z
) ^ k ) ) )  =  sum_ k  e.  ( 0 ... N ) ( ( ( *  o.  A ) `  k
)  x.  ( z ^ k ) ) )
6564mpteq2dva 4123 . 2  |-  ( ph  ->  ( z  e.  CC  |->  ( * `  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( ( * `  z ) ^ k ) ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( ( *  o.  A ) `  k
)  x.  ( z ^ k ) ) ) )
6644, 65eqtrd 2229 1  |-  ( ph  ->  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( ( *  o.  A ) `
 k )  x.  ( z ^ k
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167    u. cun 3155    C_ wss 3157   {csn 3622    |-> cmpt 4094    o. ccom 4667   -->wf 5254   ` cfv 5258  (class class class)co 5922   Fincfn 6799   CCcc 7877   0cc0 7879    x. cmul 7884   NN0cn0 9249   ...cfz 10083   ^cexp 10630   *ccj 11004   sum_csu 11518  Polycply 14964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519  df-ply 14966
This theorem is referenced by:  plycj  14997
  Copyright terms: Public domain W3C validator