ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plymullem Unicode version

Theorem plymullem 15389
Description: Lemma for plymul 15391. (Contributed by Mario Carneiro, 21-Jul-2014.)
Hypotheses
Ref Expression
plyadd.1  |-  ( ph  ->  F  e.  (Poly `  S ) )
plyadd.2  |-  ( ph  ->  G  e.  (Poly `  S ) )
plyadd.3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  +  y )  e.  S )
plyadd.m  |-  ( ph  ->  M  e.  NN0 )
plyadd.n  |-  ( ph  ->  N  e.  NN0 )
plyadd.a  |-  ( ph  ->  A  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )
plyadd.b  |-  ( ph  ->  B  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )
plyadd.a2  |-  ( ph  ->  ( A " ( ZZ>=
`  ( M  + 
1 ) ) )  =  { 0 } )
plyadd.b2  |-  ( ph  ->  ( B " ( ZZ>=
`  ( N  + 
1 ) ) )  =  { 0 } )
plyadd.f  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... M
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
plyadd.g  |-  ( ph  ->  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( B `
 k )  x.  ( z ^ k
) ) ) )
plymul.x  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  x.  y
)  e.  S )
Assertion
Ref Expression
plymullem  |-  ( ph  ->  ( F  oF  x.  G )  e.  (Poly `  S )
)
Distinct variable groups:    x, k, y, z, B    x, F, y, z    S, k, x, y, z    x, A, y, z    x, G, y, z    ph, k, x, y, z    k, M, z    k, N, z, x, y    x, M, y
Allowed substitution hints:    A( k)    F( k)    G( k)

Proof of Theorem plymullem
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 plyadd.1 . . . 4  |-  ( ph  ->  F  e.  (Poly `  S ) )
2 plyadd.2 . . . 4  |-  ( ph  ->  G  e.  (Poly `  S ) )
3 plyadd.m . . . 4  |-  ( ph  ->  M  e.  NN0 )
4 plyadd.n . . . 4  |-  ( ph  ->  N  e.  NN0 )
5 plyadd.a . . . . . 6  |-  ( ph  ->  A  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )
6 plybss 15372 . . . . . . . . . 10  |-  ( F  e.  (Poly `  S
)  ->  S  C_  CC )
71, 6syl 14 . . . . . . . . 9  |-  ( ph  ->  S  C_  CC )
8 0cnd 8107 . . . . . . . . . 10  |-  ( ph  ->  0  e.  CC )
98snssd 3792 . . . . . . . . 9  |-  ( ph  ->  { 0 }  C_  CC )
107, 9unssd 3360 . . . . . . . 8  |-  ( ph  ->  ( S  u.  {
0 } )  C_  CC )
11 cnex 8091 . . . . . . . 8  |-  CC  e.  _V
12 ssexg 4202 . . . . . . . 8  |-  ( ( ( S  u.  {
0 } )  C_  CC  /\  CC  e.  _V )  ->  ( S  u.  { 0 } )  e. 
_V )
1310, 11, 12sylancl 413 . . . . . . 7  |-  ( ph  ->  ( S  u.  {
0 } )  e. 
_V )
14 nn0ex 9343 . . . . . . 7  |-  NN0  e.  _V
15 elmapg 6778 . . . . . . 7  |-  ( ( ( S  u.  {
0 } )  e. 
_V  /\  NN0  e.  _V )  ->  ( A  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  <->  A : NN0 --> ( S  u.  { 0 } ) ) )
1613, 14, 15sylancl 413 . . . . . 6  |-  ( ph  ->  ( A  e.  ( ( S  u.  {
0 } )  ^m  NN0 )  <->  A : NN0 --> ( S  u.  { 0 } ) ) )
175, 16mpbid 147 . . . . 5  |-  ( ph  ->  A : NN0 --> ( S  u.  { 0 } ) )
1817, 10fssd 5462 . . . 4  |-  ( ph  ->  A : NN0 --> CC )
19 plyadd.b . . . . . 6  |-  ( ph  ->  B  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )
20 elmapg 6778 . . . . . . 7  |-  ( ( ( S  u.  {
0 } )  e. 
_V  /\  NN0  e.  _V )  ->  ( B  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  <->  B : NN0 --> ( S  u.  { 0 } ) ) )
2113, 14, 20sylancl 413 . . . . . 6  |-  ( ph  ->  ( B  e.  ( ( S  u.  {
0 } )  ^m  NN0 )  <->  B : NN0 --> ( S  u.  { 0 } ) ) )
2219, 21mpbid 147 . . . . 5  |-  ( ph  ->  B : NN0 --> ( S  u.  { 0 } ) )
2322, 10fssd 5462 . . . 4  |-  ( ph  ->  B : NN0 --> CC )
24 plyadd.a2 . . . 4  |-  ( ph  ->  ( A " ( ZZ>=
`  ( M  + 
1 ) ) )  =  { 0 } )
25 plyadd.b2 . . . 4  |-  ( ph  ->  ( B " ( ZZ>=
`  ( N  + 
1 ) ) )  =  { 0 } )
26 plyadd.f . . . 4  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... M
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
27 plyadd.g . . . 4  |-  ( ph  ->  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( B `
 k )  x.  ( z ^ k
) ) ) )
281, 2, 3, 4, 18, 23, 24, 25, 26, 27plymullem1 15387 . . 3  |-  ( ph  ->  ( F  oF  x.  G )  =  ( z  e.  CC  |->  sum_
n  e.  ( 0 ... ( M  +  N ) ) (
sum_ k  e.  ( 0 ... n ) ( ( A `  k )  x.  ( B `  ( n  -  k ) ) )  x.  ( z ^ n ) ) ) )
293, 4nn0addcld 9394 . . . 4  |-  ( ph  ->  ( M  +  N
)  e.  NN0 )
3010adantr 276 . . . . 5  |-  ( (
ph  /\  n  e.  ( 0 ... ( M  +  N )
) )  ->  ( S  u.  { 0 } )  C_  CC )
31 eqid 2209 . . . . . . 7  |-  ( S  u.  { 0 } )  =  ( S  u.  { 0 } )
32 plyadd.3 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  +  y )  e.  S )
337, 31, 32un0addcl 9370 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( S  u.  {
0 } )  /\  y  e.  ( S  u.  { 0 } ) ) )  ->  (
x  +  y )  e.  ( S  u.  { 0 } ) )
3433adantlr 477 . . . . 5  |-  ( ( ( ph  /\  n  e.  ( 0 ... ( M  +  N )
) )  /\  (
x  e.  ( S  u.  { 0 } )  /\  y  e.  ( S  u.  {
0 } ) ) )  ->  ( x  +  y )  e.  ( S  u.  {
0 } ) )
35 0zd 9426 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 0 ... ( M  +  N )
) )  ->  0  e.  ZZ )
36 elfzelz 10189 . . . . . . 7  |-  ( n  e.  ( 0 ... ( M  +  N
) )  ->  n  e.  ZZ )
3736adantl 277 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 0 ... ( M  +  N )
) )  ->  n  e.  ZZ )
3835, 37fzfigd 10620 . . . . 5  |-  ( (
ph  /\  n  e.  ( 0 ... ( M  +  N )
) )  ->  (
0 ... n )  e. 
Fin )
39 elfznn0 10278 . . . . . . . . 9  |-  ( k  e.  ( 0 ... n )  ->  k  e.  NN0 )
40 ffvelcdm 5741 . . . . . . . . 9  |-  ( ( A : NN0 --> ( S  u.  { 0 } )  /\  k  e. 
NN0 )  ->  ( A `  k )  e.  ( S  u.  {
0 } ) )
4117, 39, 40syl2an 289 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... n
) )  ->  ( A `  k )  e.  ( S  u.  {
0 } ) )
42 fznn0sub 10221 . . . . . . . . 9  |-  ( k  e.  ( 0 ... n )  ->  (
n  -  k )  e.  NN0 )
43 ffvelcdm 5741 . . . . . . . . 9  |-  ( ( B : NN0 --> ( S  u.  { 0 } )  /\  ( n  -  k )  e. 
NN0 )  ->  ( B `  ( n  -  k ) )  e.  ( S  u.  { 0 } ) )
4422, 42, 43syl2an 289 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... n
) )  ->  ( B `  ( n  -  k ) )  e.  ( S  u.  { 0 } ) )
4541, 44jca 306 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... n
) )  ->  (
( A `  k
)  e.  ( S  u.  { 0 } )  /\  ( B `
 ( n  -  k ) )  e.  ( S  u.  {
0 } ) ) )
46 plymul.x . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  x.  y
)  e.  S )
477, 31, 46un0mulcl 9371 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( S  u.  {
0 } )  /\  y  e.  ( S  u.  { 0 } ) ) )  ->  (
x  x.  y )  e.  ( S  u.  { 0 } ) )
4847caovclg 6129 . . . . . . 7  |-  ( (
ph  /\  ( ( A `  k )  e.  ( S  u.  {
0 } )  /\  ( B `  ( n  -  k ) )  e.  ( S  u.  { 0 } ) ) )  ->  ( ( A `  k )  x.  ( B `  (
n  -  k ) ) )  e.  ( S  u.  { 0 } ) )
4945, 48syldan 282 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... n
) )  ->  (
( A `  k
)  x.  ( B `
 ( n  -  k ) ) )  e.  ( S  u.  { 0 } ) )
5049adantlr 477 . . . . 5  |-  ( ( ( ph  /\  n  e.  ( 0 ... ( M  +  N )
) )  /\  k  e.  ( 0 ... n
) )  ->  (
( A `  k
)  x.  ( B `
 ( n  -  k ) ) )  e.  ( S  u.  { 0 } ) )
51 ssun2 3348 . . . . . . 7  |-  { 0 }  C_  ( S  u.  { 0 } )
52 c0ex 8108 . . . . . . . 8  |-  0  e.  _V
5352snss 3782 . . . . . . 7  |-  ( 0  e.  ( S  u.  { 0 } )  <->  { 0 }  C_  ( S  u.  { 0 } ) )
5451, 53mpbir 146 . . . . . 6  |-  0  e.  ( S  u.  {
0 } )
5554a1i 9 . . . . 5  |-  ( (
ph  /\  n  e.  ( 0 ... ( M  +  N )
) )  ->  0  e.  ( S  u.  {
0 } ) )
5630, 34, 38, 50, 55fsumcllem 11876 . . . 4  |-  ( (
ph  /\  n  e.  ( 0 ... ( M  +  N )
) )  ->  sum_ k  e.  ( 0 ... n
) ( ( A `
 k )  x.  ( B `  (
n  -  k ) ) )  e.  ( S  u.  { 0 } ) )
5710, 29, 56elplyd 15380 . . 3  |-  ( ph  ->  ( z  e.  CC  |->  sum_
n  e.  ( 0 ... ( M  +  N ) ) (
sum_ k  e.  ( 0 ... n ) ( ( A `  k )  x.  ( B `  ( n  -  k ) ) )  x.  ( z ^ n ) ) )  e.  (Poly `  ( S  u.  { 0 } ) ) )
5828, 57eqeltrd 2286 . 2  |-  ( ph  ->  ( F  oF  x.  G )  e.  (Poly `  ( S  u.  { 0 } ) ) )
59 plyun0 15375 . 2  |-  (Poly `  ( S  u.  { 0 } ) )  =  (Poly `  S )
6058, 59eleqtrdi 2302 1  |-  ( ph  ->  ( F  oF  x.  G )  e.  (Poly `  S )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1375    e. wcel 2180   _Vcvv 2779    u. cun 3175    C_ wss 3177   {csn 3646    |-> cmpt 4124   "cima 4699   -->wf 5290   ` cfv 5294  (class class class)co 5974    oFcof 6186    ^m cmap 6765   CCcc 7965   0cc0 7967   1c1 7968    + caddc 7970    x. cmul 7972    - cmin 8285   NN0cn0 9337   ZZcz 9414   ZZ>=cuz 9690   ...cfz 10172   ^cexp 10727   sum_csu 11830  Polycply 15367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-disj 4039  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-of 6188  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-frec 6507  df-1o 6532  df-oadd 6536  df-er 6650  df-map 6767  df-en 6858  df-dom 6859  df-fin 6860  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-fz 10173  df-fzo 10307  df-seqfrec 10637  df-exp 10728  df-ihash 10965  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-clim 11756  df-sumdc 11831  df-ply 15369
This theorem is referenced by:  plymul  15391
  Copyright terms: Public domain W3C validator