ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plycn Unicode version

Theorem plycn 15024
Description: A polynomial is a continuous function. (Contributed by Mario Carneiro, 23-Jul-2014.) Avoid ax-mulf 8005. (Revised by GG, 16-Mar-2025.)
Assertion
Ref Expression
plycn  |-  ( F  e.  (Poly `  S
)  ->  F  e.  ( CC -cn-> CC ) )

Proof of Theorem plycn
Dummy variables  a  d  k  z  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elply 14996 . . 3  |-  ( F  e.  (Poly `  S
)  <->  ( S  C_  CC  /\  E. d  e. 
NN0  E. a  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )
21simprbi 275 . 2  |-  ( F  e.  (Poly `  S
)  ->  E. d  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )
3 simpr 110 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  (
d  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( a `  k )  x.  (
z ^ k ) ) ) )
4 eqid 2196 . . . . . . . 8  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
54cnfldtopon 14802 . . . . . . . . 9  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
65a1i 9 . . . . . . . 8  |-  ( ( F  e.  (Poly `  S )  /\  (
d  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  -> 
( TopOpen ` fld )  e.  (TopOn `  CC ) )
7 0zd 9341 . . . . . . . . 9  |-  ( ( F  e.  (Poly `  S )  /\  (
d  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  -> 
0  e.  ZZ )
8 simprl 529 . . . . . . . . . 10  |-  ( ( F  e.  (Poly `  S )  /\  (
d  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  -> 
d  e.  NN0 )
98nn0zd 9449 . . . . . . . . 9  |-  ( ( F  e.  (Poly `  S )  /\  (
d  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  -> 
d  e.  ZZ )
107, 9fzfigd 10526 . . . . . . . 8  |-  ( ( F  e.  (Poly `  S )  /\  (
d  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  -> 
( 0 ... d
)  e.  Fin )
115a1i 9 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  S )  /\  (
d  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  k  e.  ( 0 ... d ) )  ->  ( TopOpen ` fld )  e.  (TopOn `  CC ) )
12 elmapi 6731 . . . . . . . . . . . . . 14  |-  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  ->  a : NN0 --> ( S  u.  { 0 } ) )
1312ad2antll 491 . . . . . . . . . . . . 13  |-  ( ( F  e.  (Poly `  S )  /\  (
d  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  -> 
a : NN0 --> ( S  u.  { 0 } ) )
14 plybss 14995 . . . . . . . . . . . . . . 15  |-  ( F  e.  (Poly `  S
)  ->  S  C_  CC )
1514adantr 276 . . . . . . . . . . . . . 14  |-  ( ( F  e.  (Poly `  S )  /\  (
d  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  ->  S  C_  CC )
16 0cnd 8022 . . . . . . . . . . . . . . 15  |-  ( ( F  e.  (Poly `  S )  /\  (
d  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  -> 
0  e.  CC )
1716snssd 3768 . . . . . . . . . . . . . 14  |-  ( ( F  e.  (Poly `  S )  /\  (
d  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  ->  { 0 }  C_  CC )
1815, 17unssd 3340 . . . . . . . . . . . . 13  |-  ( ( F  e.  (Poly `  S )  /\  (
d  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  -> 
( S  u.  {
0 } )  C_  CC )
1913, 18fssd 5421 . . . . . . . . . . . 12  |-  ( ( F  e.  (Poly `  S )  /\  (
d  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  -> 
a : NN0 --> CC )
2019adantr 276 . . . . . . . . . . 11  |-  ( ( ( F  e.  (Poly `  S )  /\  (
d  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  k  e.  ( 0 ... d ) )  ->  a : NN0 --> CC )
21 elfznn0 10192 . . . . . . . . . . . 12  |-  ( k  e.  ( 0 ... d )  ->  k  e.  NN0 )
2221adantl 277 . . . . . . . . . . 11  |-  ( ( ( F  e.  (Poly `  S )  /\  (
d  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  k  e.  ( 0 ... d ) )  ->  k  e.  NN0 )
2320, 22ffvelcdmd 5699 . . . . . . . . . 10  |-  ( ( ( F  e.  (Poly `  S )  /\  (
d  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  k  e.  ( 0 ... d ) )  ->  ( a `  k )  e.  CC )
2411, 11, 23cnmptc 14544 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  S )  /\  (
d  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  k  e.  ( 0 ... d ) )  ->  ( z  e.  CC  |->  ( a `  k ) )  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen
` fld
) ) )
254expcn 14831 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( z  e.  CC  |->  ( z ^ k ) )  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen ` fld ) ) )
2622, 25syl 14 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  S )  /\  (
d  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  k  e.  ( 0 ... d ) )  ->  ( z  e.  CC  |->  ( z ^
k ) )  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen
` fld
) ) )
274mpomulcn 14828 . . . . . . . . . 10  |-  ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) )  e.  ( ( (
TopOpen ` fld )  tX  ( TopOpen ` fld )
)  Cn  ( TopOpen ` fld )
)
2827a1i 9 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  S )  /\  (
d  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  k  e.  ( 0 ... d ) )  ->  ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) )  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) ) )
29 oveq12 5932 . . . . . . . . 9  |-  ( ( u  =  ( a `
 k )  /\  v  =  ( z ^ k ) )  ->  ( u  x.  v )  =  ( ( a `  k
)  x.  ( z ^ k ) ) )
3011, 24, 26, 11, 11, 28, 29cnmpt12 14549 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  S )  /\  (
d  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  k  e.  ( 0 ... d ) )  ->  ( z  e.  CC  |->  ( ( a `
 k )  x.  ( z ^ k
) ) )  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen
` fld
) ) )
314, 6, 10, 30fsumcn 14830 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  (
d  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  -> 
( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( a `  k
)  x.  ( z ^ k ) ) )  e.  ( (
TopOpen ` fld )  Cn  ( TopOpen ` fld )
) )
3231adantr 276 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  (
d  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  -> 
( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( a `  k
)  x.  ( z ^ k ) ) )  e.  ( (
TopOpen ` fld )  Cn  ( TopOpen ` fld )
) )
333, 32eqeltrd 2273 . . . . 5  |-  ( ( ( F  e.  (Poly `  S )  /\  (
d  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  ->  F  e.  ( ( TopOpen
` fld
)  Cn  ( TopOpen ` fld )
) )
344cncfcn1 14857 . . . . 5  |-  ( CC
-cn-> CC )  =  ( ( TopOpen ` fld )  Cn  ( TopOpen
` fld
) )
3533, 34eleqtrrdi 2290 . . . 4  |-  ( ( ( F  e.  (Poly `  S )  /\  (
d  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  ->  F  e.  ( CC -cn-> CC ) )
3635ex 115 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  (
d  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  -> 
( F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( a `  k
)  x.  ( z ^ k ) ) )  ->  F  e.  ( CC -cn-> CC ) ) )
3736rexlimdvva 2622 . 2  |-  ( F  e.  (Poly `  S
)  ->  ( E. d  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( a `  k
)  x.  ( z ^ k ) ) )  ->  F  e.  ( CC -cn-> CC ) ) )
382, 37mpd 13 1  |-  ( F  e.  (Poly `  S
)  ->  F  e.  ( CC -cn-> CC ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   E.wrex 2476    u. cun 3155    C_ wss 3157   {csn 3623    |-> cmpt 4095   -->wf 5255   ` cfv 5259  (class class class)co 5923    e. cmpo 5925    ^m cmap 6709   CCcc 7880   0cc0 7882    x. cmul 7887   NN0cn0 9252   ...cfz 10086   ^cexp 10633   sum_csu 11521   TopOpenctopn 12928  ℂfldccnfld 14138  TopOnctopon 14272    Cn ccn 14447    tX ctx 14514   -cn->ccncf 14832  Polycply 14990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7973  ax-resscn 7974  ax-1cn 7975  ax-1re 7976  ax-icn 7977  ax-addcl 7978  ax-addrcl 7979  ax-mulcl 7980  ax-mulrcl 7981  ax-addcom 7982  ax-mulcom 7983  ax-addass 7984  ax-mulass 7985  ax-distr 7986  ax-i2m1 7987  ax-0lt1 7988  ax-1rid 7989  ax-0id 7990  ax-rnegex 7991  ax-precex 7992  ax-cnre 7993  ax-pre-ltirr 7994  ax-pre-ltwlin 7995  ax-pre-lttrn 7996  ax-pre-apti 7997  ax-pre-ltadd 7998  ax-pre-mulgt0 7999  ax-pre-mulext 8000  ax-arch 8001  ax-caucvg 8002  ax-addf 8004
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6200  df-2nd 6201  df-recs 6365  df-irdg 6430  df-frec 6451  df-1o 6476  df-oadd 6480  df-er 6594  df-map 6711  df-en 6802  df-dom 6803  df-fin 6804  df-sup 7052  df-inf 7053  df-pnf 8066  df-mnf 8067  df-xr 8068  df-ltxr 8069  df-le 8070  df-sub 8202  df-neg 8203  df-reap 8605  df-ap 8612  df-div 8703  df-inn 8994  df-2 9052  df-3 9053  df-4 9054  df-5 9055  df-6 9056  df-7 9057  df-8 9058  df-9 9059  df-n0 9253  df-z 9330  df-dec 9461  df-uz 9605  df-q 9697  df-rp 9732  df-xneg 9850  df-xadd 9851  df-fz 10087  df-fzo 10221  df-seqfrec 10543  df-exp 10634  df-ihash 10871  df-cj 11010  df-re 11011  df-im 11012  df-rsqrt 11166  df-abs 11167  df-clim 11447  df-sumdc 11522  df-struct 12691  df-ndx 12692  df-slot 12693  df-base 12695  df-plusg 12779  df-mulr 12780  df-starv 12781  df-tset 12785  df-ple 12786  df-ds 12788  df-unif 12789  df-rest 12929  df-topn 12930  df-topgen 12948  df-psmet 14125  df-xmet 14126  df-met 14127  df-bl 14128  df-mopn 14129  df-fg 14131  df-metu 14132  df-cnfld 14139  df-top 14260  df-topon 14273  df-topsp 14293  df-bases 14305  df-cn 14450  df-cnp 14451  df-tx 14515  df-xms 14601  df-ms 14602  df-cncf 14833  df-ply 14992
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator