ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plycn Unicode version

Theorem plycn 14932
Description: A polynomial is a continuous function. (Contributed by Mario Carneiro, 23-Jul-2014.) Avoid ax-mulf 7997. (Revised by GG, 16-Mar-2025.)
Assertion
Ref Expression
plycn  |-  ( F  e.  (Poly `  S
)  ->  F  e.  ( CC -cn-> CC ) )

Proof of Theorem plycn
Dummy variables  a  d  k  z  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elply 14905 . . 3  |-  ( F  e.  (Poly `  S
)  <->  ( S  C_  CC  /\  E. d  e. 
NN0  E. a  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )
21simprbi 275 . 2  |-  ( F  e.  (Poly `  S
)  ->  E. d  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )
3 simpr 110 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  (
d  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( a `  k )  x.  (
z ^ k ) ) ) )
4 eqid 2193 . . . . . . . 8  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
54cnfldtopon 14719 . . . . . . . . 9  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
65a1i 9 . . . . . . . 8  |-  ( ( F  e.  (Poly `  S )  /\  (
d  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  -> 
( TopOpen ` fld )  e.  (TopOn `  CC ) )
7 0zd 9332 . . . . . . . . 9  |-  ( ( F  e.  (Poly `  S )  /\  (
d  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  -> 
0  e.  ZZ )
8 simprl 529 . . . . . . . . . 10  |-  ( ( F  e.  (Poly `  S )  /\  (
d  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  -> 
d  e.  NN0 )
98nn0zd 9440 . . . . . . . . 9  |-  ( ( F  e.  (Poly `  S )  /\  (
d  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  -> 
d  e.  ZZ )
107, 9fzfigd 10505 . . . . . . . 8  |-  ( ( F  e.  (Poly `  S )  /\  (
d  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  -> 
( 0 ... d
)  e.  Fin )
115a1i 9 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  S )  /\  (
d  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  k  e.  ( 0 ... d ) )  ->  ( TopOpen ` fld )  e.  (TopOn `  CC ) )
12 elmapi 6726 . . . . . . . . . . . . . 14  |-  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  ->  a : NN0 --> ( S  u.  { 0 } ) )
1312ad2antll 491 . . . . . . . . . . . . 13  |-  ( ( F  e.  (Poly `  S )  /\  (
d  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  -> 
a : NN0 --> ( S  u.  { 0 } ) )
14 plybss 14904 . . . . . . . . . . . . . . 15  |-  ( F  e.  (Poly `  S
)  ->  S  C_  CC )
1514adantr 276 . . . . . . . . . . . . . 14  |-  ( ( F  e.  (Poly `  S )  /\  (
d  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  ->  S  C_  CC )
16 0cnd 8014 . . . . . . . . . . . . . . 15  |-  ( ( F  e.  (Poly `  S )  /\  (
d  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  -> 
0  e.  CC )
1716snssd 3764 . . . . . . . . . . . . . 14  |-  ( ( F  e.  (Poly `  S )  /\  (
d  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  ->  { 0 }  C_  CC )
1815, 17unssd 3336 . . . . . . . . . . . . 13  |-  ( ( F  e.  (Poly `  S )  /\  (
d  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  -> 
( S  u.  {
0 } )  C_  CC )
1913, 18fssd 5417 . . . . . . . . . . . 12  |-  ( ( F  e.  (Poly `  S )  /\  (
d  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  -> 
a : NN0 --> CC )
2019adantr 276 . . . . . . . . . . 11  |-  ( ( ( F  e.  (Poly `  S )  /\  (
d  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  k  e.  ( 0 ... d ) )  ->  a : NN0 --> CC )
21 elfznn0 10183 . . . . . . . . . . . 12  |-  ( k  e.  ( 0 ... d )  ->  k  e.  NN0 )
2221adantl 277 . . . . . . . . . . 11  |-  ( ( ( F  e.  (Poly `  S )  /\  (
d  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  k  e.  ( 0 ... d ) )  ->  k  e.  NN0 )
2320, 22ffvelcdmd 5695 . . . . . . . . . 10  |-  ( ( ( F  e.  (Poly `  S )  /\  (
d  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  k  e.  ( 0 ... d ) )  ->  ( a `  k )  e.  CC )
2411, 11, 23cnmptc 14461 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  S )  /\  (
d  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  k  e.  ( 0 ... d ) )  ->  ( z  e.  CC  |->  ( a `  k ) )  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen
` fld
) ) )
254expcn 14748 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( z  e.  CC  |->  ( z ^ k ) )  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen ` fld ) ) )
2622, 25syl 14 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  S )  /\  (
d  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  k  e.  ( 0 ... d ) )  ->  ( z  e.  CC  |->  ( z ^
k ) )  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen
` fld
) ) )
274mpomulcn 14745 . . . . . . . . . 10  |-  ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) )  e.  ( ( (
TopOpen ` fld )  tX  ( TopOpen ` fld )
)  Cn  ( TopOpen ` fld )
)
2827a1i 9 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  S )  /\  (
d  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  k  e.  ( 0 ... d ) )  ->  ( u  e.  CC ,  v  e.  CC  |->  ( u  x.  v ) )  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) ) )
29 oveq12 5928 . . . . . . . . 9  |-  ( ( u  =  ( a `
 k )  /\  v  =  ( z ^ k ) )  ->  ( u  x.  v )  =  ( ( a `  k
)  x.  ( z ^ k ) ) )
3011, 24, 26, 11, 11, 28, 29cnmpt12 14466 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  S )  /\  (
d  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  k  e.  ( 0 ... d ) )  ->  ( z  e.  CC  |->  ( ( a `
 k )  x.  ( z ^ k
) ) )  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen
` fld
) ) )
314, 6, 10, 30fsumcn 14747 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  (
d  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  -> 
( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( a `  k
)  x.  ( z ^ k ) ) )  e.  ( (
TopOpen ` fld )  Cn  ( TopOpen ` fld )
) )
3231adantr 276 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  (
d  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  -> 
( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( a `  k
)  x.  ( z ^ k ) ) )  e.  ( (
TopOpen ` fld )  Cn  ( TopOpen ` fld )
) )
333, 32eqeltrd 2270 . . . . 5  |-  ( ( ( F  e.  (Poly `  S )  /\  (
d  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  ->  F  e.  ( ( TopOpen
` fld
)  Cn  ( TopOpen ` fld )
) )
344cncfcn1 14774 . . . . 5  |-  ( CC
-cn-> CC )  =  ( ( TopOpen ` fld )  Cn  ( TopOpen
` fld
) )
3533, 34eleqtrrdi 2287 . . . 4  |-  ( ( ( F  e.  (Poly `  S )  /\  (
d  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  ->  F  e.  ( CC -cn-> CC ) )
3635ex 115 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  (
d  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  -> 
( F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( a `  k
)  x.  ( z ^ k ) ) )  ->  F  e.  ( CC -cn-> CC ) ) )
3736rexlimdvva 2619 . 2  |-  ( F  e.  (Poly `  S
)  ->  ( E. d  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( a `  k
)  x.  ( z ^ k ) ) )  ->  F  e.  ( CC -cn-> CC ) ) )
382, 37mpd 13 1  |-  ( F  e.  (Poly `  S
)  ->  F  e.  ( CC -cn-> CC ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   E.wrex 2473    u. cun 3152    C_ wss 3154   {csn 3619    |-> cmpt 4091   -->wf 5251   ` cfv 5255  (class class class)co 5919    e. cmpo 5921    ^m cmap 6704   CCcc 7872   0cc0 7874    x. cmul 7879   NN0cn0 9243   ...cfz 10077   ^cexp 10612   sum_csu 11499   TopOpenctopn 12854  ℂfldccnfld 14055  TopOnctopon 14189    Cn ccn 14364    tX ctx 14431   -cn->ccncf 14749  Polycply 14899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994  ax-addf 7996
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-tp 3627  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-oadd 6475  df-er 6589  df-map 6706  df-en 6797  df-dom 6798  df-fin 6799  df-sup 7045  df-inf 7046  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-9 9050  df-n0 9244  df-z 9321  df-dec 9452  df-uz 9596  df-q 9688  df-rp 9723  df-xneg 9841  df-xadd 9842  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-exp 10613  df-ihash 10850  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-sumdc 11500  df-struct 12623  df-ndx 12624  df-slot 12625  df-base 12627  df-plusg 12711  df-mulr 12712  df-starv 12713  df-tset 12717  df-ple 12718  df-ds 12720  df-unif 12721  df-rest 12855  df-topn 12856  df-topgen 12874  df-psmet 14042  df-xmet 14043  df-met 14044  df-bl 14045  df-mopn 14046  df-fg 14048  df-metu 14049  df-cnfld 14056  df-top 14177  df-topon 14190  df-topsp 14210  df-bases 14222  df-cn 14367  df-cnp 14368  df-tx 14432  df-xms 14518  df-ms 14519  df-cncf 14750  df-ply 14901
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator