ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plyreres Unicode version

Theorem plyreres 15280
Description: Real-coefficient polynomials restrict to real functions. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Assertion
Ref Expression
plyreres  |-  ( F  e.  (Poly `  RR )  ->  ( F  |`  RR ) : RR --> RR )

Proof of Theorem plyreres
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 plybss 15249 . . 3  |-  ( F  e.  (Poly `  RR )  ->  RR  C_  CC )
2 plyf 15253 . . . 4  |-  ( F  e.  (Poly `  RR )  ->  F : CC --> CC )
3 ffn 5431 . . . 4  |-  ( F : CC --> CC  ->  F  Fn  CC )
4 fnssresb 5393 . . . 4  |-  ( F  Fn  CC  ->  (
( F  |`  RR )  Fn  RR  <->  RR  C_  CC ) )
52, 3, 43syl 17 . . 3  |-  ( F  e.  (Poly `  RR )  ->  ( ( F  |`  RR )  Fn  RR  <->  RR  C_  CC ) )
61, 5mpbird 167 . 2  |-  ( F  e.  (Poly `  RR )  ->  ( F  |`  RR )  Fn  RR )
7 fvres 5607 . . . . . 6  |-  ( a  e.  RR  ->  (
( F  |`  RR ) `
 a )  =  ( F `  a
) )
87adantl 277 . . . . 5  |-  ( ( F  e.  (Poly `  RR )  /\  a  e.  RR )  ->  (
( F  |`  RR ) `
 a )  =  ( F `  a
) )
9 recn 8065 . . . . . . 7  |-  ( a  e.  RR  ->  a  e.  CC )
10 ffvelcdm 5720 . . . . . . 7  |-  ( ( F : CC --> CC  /\  a  e.  CC )  ->  ( F `  a
)  e.  CC )
112, 9, 10syl2an 289 . . . . . 6  |-  ( ( F  e.  (Poly `  RR )  /\  a  e.  RR )  ->  ( F `  a )  e.  CC )
12 plyrecj 15279 . . . . . . . 8  |-  ( ( F  e.  (Poly `  RR )  /\  a  e.  CC )  ->  (
* `  ( F `  a ) )  =  ( F `  (
* `  a )
) )
139, 12sylan2 286 . . . . . . 7  |-  ( ( F  e.  (Poly `  RR )  /\  a  e.  RR )  ->  (
* `  ( F `  a ) )  =  ( F `  (
* `  a )
) )
14 cjre 11237 . . . . . . . . 9  |-  ( a  e.  RR  ->  (
* `  a )  =  a )
1514adantl 277 . . . . . . . 8  |-  ( ( F  e.  (Poly `  RR )  /\  a  e.  RR )  ->  (
* `  a )  =  a )
1615fveq2d 5587 . . . . . . 7  |-  ( ( F  e.  (Poly `  RR )  /\  a  e.  RR )  ->  ( F `  ( * `  a ) )  =  ( F `  a
) )
1713, 16eqtrd 2239 . . . . . 6  |-  ( ( F  e.  (Poly `  RR )  /\  a  e.  RR )  ->  (
* `  ( F `  a ) )  =  ( F `  a
) )
1811, 17cjrebd 11301 . . . . 5  |-  ( ( F  e.  (Poly `  RR )  /\  a  e.  RR )  ->  ( F `  a )  e.  RR )
198, 18eqeltrd 2283 . . . 4  |-  ( ( F  e.  (Poly `  RR )  /\  a  e.  RR )  ->  (
( F  |`  RR ) `
 a )  e.  RR )
2019ralrimiva 2580 . . 3  |-  ( F  e.  (Poly `  RR )  ->  A. a  e.  RR  ( ( F  |`  RR ) `  a )  e.  RR )
21 fnfvrnss 5747 . . 3  |-  ( ( ( F  |`  RR )  Fn  RR  /\  A. a  e.  RR  (
( F  |`  RR ) `
 a )  e.  RR )  ->  ran  ( F  |`  RR ) 
C_  RR )
226, 20, 21syl2anc 411 . 2  |-  ( F  e.  (Poly `  RR )  ->  ran  ( F  |`  RR )  C_  RR )
23 df-f 5280 . 2  |-  ( ( F  |`  RR ) : RR --> RR  <->  ( ( F  |`  RR )  Fn  RR  /\  ran  ( F  |`  RR )  C_  RR ) )
246, 22, 23sylanbrc 417 1  |-  ( F  e.  (Poly `  RR )  ->  ( F  |`  RR ) : RR --> RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2177   A.wral 2485    C_ wss 3167   ran crn 4680    |` cres 4681    Fn wfn 5271   -->wf 5272   ` cfv 5276   CCcc 7930   RRcr 7931   *ccj 11194  Polycply 15244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-isom 5285  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-frec 6484  df-1o 6509  df-oadd 6513  df-er 6627  df-map 6744  df-en 6835  df-dom 6836  df-fin 6837  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-n0 9303  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-fz 10138  df-fzo 10272  df-seqfrec 10600  df-exp 10691  df-ihash 10928  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-clim 11634  df-sumdc 11709  df-ply 15246
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator