ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plyreres Unicode version

Theorem plyreres 15446
Description: Real-coefficient polynomials restrict to real functions. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Assertion
Ref Expression
plyreres  |-  ( F  e.  (Poly `  RR )  ->  ( F  |`  RR ) : RR --> RR )

Proof of Theorem plyreres
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 plybss 15415 . . 3  |-  ( F  e.  (Poly `  RR )  ->  RR  C_  CC )
2 plyf 15419 . . . 4  |-  ( F  e.  (Poly `  RR )  ->  F : CC --> CC )
3 ffn 5473 . . . 4  |-  ( F : CC --> CC  ->  F  Fn  CC )
4 fnssresb 5435 . . . 4  |-  ( F  Fn  CC  ->  (
( F  |`  RR )  Fn  RR  <->  RR  C_  CC ) )
52, 3, 43syl 17 . . 3  |-  ( F  e.  (Poly `  RR )  ->  ( ( F  |`  RR )  Fn  RR  <->  RR  C_  CC ) )
61, 5mpbird 167 . 2  |-  ( F  e.  (Poly `  RR )  ->  ( F  |`  RR )  Fn  RR )
7 fvres 5653 . . . . . 6  |-  ( a  e.  RR  ->  (
( F  |`  RR ) `
 a )  =  ( F `  a
) )
87adantl 277 . . . . 5  |-  ( ( F  e.  (Poly `  RR )  /\  a  e.  RR )  ->  (
( F  |`  RR ) `
 a )  =  ( F `  a
) )
9 recn 8140 . . . . . . 7  |-  ( a  e.  RR  ->  a  e.  CC )
10 ffvelcdm 5770 . . . . . . 7  |-  ( ( F : CC --> CC  /\  a  e.  CC )  ->  ( F `  a
)  e.  CC )
112, 9, 10syl2an 289 . . . . . 6  |-  ( ( F  e.  (Poly `  RR )  /\  a  e.  RR )  ->  ( F `  a )  e.  CC )
12 plyrecj 15445 . . . . . . . 8  |-  ( ( F  e.  (Poly `  RR )  /\  a  e.  CC )  ->  (
* `  ( F `  a ) )  =  ( F `  (
* `  a )
) )
139, 12sylan2 286 . . . . . . 7  |-  ( ( F  e.  (Poly `  RR )  /\  a  e.  RR )  ->  (
* `  ( F `  a ) )  =  ( F `  (
* `  a )
) )
14 cjre 11401 . . . . . . . . 9  |-  ( a  e.  RR  ->  (
* `  a )  =  a )
1514adantl 277 . . . . . . . 8  |-  ( ( F  e.  (Poly `  RR )  /\  a  e.  RR )  ->  (
* `  a )  =  a )
1615fveq2d 5633 . . . . . . 7  |-  ( ( F  e.  (Poly `  RR )  /\  a  e.  RR )  ->  ( F `  ( * `  a ) )  =  ( F `  a
) )
1713, 16eqtrd 2262 . . . . . 6  |-  ( ( F  e.  (Poly `  RR )  /\  a  e.  RR )  ->  (
* `  ( F `  a ) )  =  ( F `  a
) )
1811, 17cjrebd 11465 . . . . 5  |-  ( ( F  e.  (Poly `  RR )  /\  a  e.  RR )  ->  ( F `  a )  e.  RR )
198, 18eqeltrd 2306 . . . 4  |-  ( ( F  e.  (Poly `  RR )  /\  a  e.  RR )  ->  (
( F  |`  RR ) `
 a )  e.  RR )
2019ralrimiva 2603 . . 3  |-  ( F  e.  (Poly `  RR )  ->  A. a  e.  RR  ( ( F  |`  RR ) `  a )  e.  RR )
21 fnfvrnss 5797 . . 3  |-  ( ( ( F  |`  RR )  Fn  RR  /\  A. a  e.  RR  (
( F  |`  RR ) `
 a )  e.  RR )  ->  ran  ( F  |`  RR ) 
C_  RR )
226, 20, 21syl2anc 411 . 2  |-  ( F  e.  (Poly `  RR )  ->  ran  ( F  |`  RR )  C_  RR )
23 df-f 5322 . 2  |-  ( ( F  |`  RR ) : RR --> RR  <->  ( ( F  |`  RR )  Fn  RR  /\  ran  ( F  |`  RR )  C_  RR ) )
246, 22, 23sylanbrc 417 1  |-  ( F  e.  (Poly `  RR )  ->  ( F  |`  RR ) : RR --> RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   A.wral 2508    C_ wss 3197   ran crn 4720    |` cres 4721    Fn wfn 5313   -->wf 5314   ` cfv 5318   CCcc 8005   RRcr 8006   *ccj 11358  Polycply 15410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-frec 6543  df-1o 6568  df-oadd 6572  df-er 6688  df-map 6805  df-en 6896  df-dom 6897  df-fin 6898  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-fz 10213  df-fzo 10347  df-seqfrec 10678  df-exp 10769  df-ihash 11006  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-clim 11798  df-sumdc 11873  df-ply 15412
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator