ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omexg Unicode version

Theorem omexg 6354
Description: Ordinal multiplication is a set. (Contributed by Mario Carneiro, 3-Jul-2019.)
Assertion
Ref Expression
omexg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  .o  B
)  e.  _V )

Proof of Theorem omexg
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2692 . . . 4  |-  y  e. 
_V
2 0ex 4062 . . . . 5  |-  (/)  e.  _V
3 vex 2692 . . . . . 6  |-  x  e. 
_V
4 omfnex 6352 . . . . . 6  |-  ( x  e.  _V  ->  (
z  e.  _V  |->  ( z  +o  x ) )  Fn  _V )
53, 4ax-mp 5 . . . . 5  |-  ( z  e.  _V  |->  ( z  +o  x ) )  Fn  _V
62, 5rdgexg 6293 . . . 4  |-  ( y  e.  _V  ->  ( rec ( ( z  e. 
_V  |->  ( z  +o  x ) ) ,  (/) ) `  y )  e.  _V )
71, 6ax-mp 5 . . 3  |-  ( rec ( ( z  e. 
_V  |->  ( z  +o  x ) ) ,  (/) ) `  y )  e.  _V
87gen2 1427 . 2  |-  A. x A. y ( rec (
( z  e.  _V  |->  ( z  +o  x
) ) ,  (/) ) `  y )  e.  _V
9 df-omul 6325 . . 3  |-  .o  =  ( x  e.  On ,  y  e.  On  |->  ( rec ( ( z  e.  _V  |->  ( z  +o  x ) ) ,  (/) ) `  y
) )
109mpofvex 6108 . 2  |-  ( ( A. x A. y
( rec ( ( z  e.  _V  |->  ( z  +o  x ) ) ,  (/) ) `  y )  e.  _V  /\  A  e.  V  /\  B  e.  W )  ->  ( A  .o  B
)  e.  _V )
118, 10mp3an1 1303 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  .o  B
)  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1330    e. wcel 1481   _Vcvv 2689   (/)c0 3367    |-> cmpt 3996   Oncon0 4292    Fn wfn 5125   ` cfv 5130  (class class class)co 5781   reccrdg 6273    +o coa 6317    .o comu 6318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4050  ax-sep 4053  ax-nul 4061  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-nul 3368  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-iun 3822  df-br 3937  df-opab 3997  df-mpt 3998  df-tr 4034  df-id 4222  df-iord 4295  df-on 4297  df-suc 4300  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-f1 5135  df-fo 5136  df-f1o 5137  df-fv 5138  df-ov 5784  df-oprab 5785  df-mpo 5786  df-1st 6045  df-2nd 6046  df-recs 6209  df-irdg 6274  df-oadd 6324  df-omul 6325
This theorem is referenced by:  fnoei  6355  oeiexg  6356  oeiv  6359  omv2  6368
  Copyright terms: Public domain W3C validator