ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omexg Unicode version

Theorem omexg 6277
Description: Ordinal multiplication is a set. (Contributed by Mario Carneiro, 3-Jul-2019.)
Assertion
Ref Expression
omexg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  .o  B
)  e.  _V )

Proof of Theorem omexg
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2644 . . . 4  |-  y  e. 
_V
2 0ex 3995 . . . . 5  |-  (/)  e.  _V
3 vex 2644 . . . . . 6  |-  x  e. 
_V
4 omfnex 6275 . . . . . 6  |-  ( x  e.  _V  ->  (
z  e.  _V  |->  ( z  +o  x ) )  Fn  _V )
53, 4ax-mp 7 . . . . 5  |-  ( z  e.  _V  |->  ( z  +o  x ) )  Fn  _V
62, 5rdgexg 6216 . . . 4  |-  ( y  e.  _V  ->  ( rec ( ( z  e. 
_V  |->  ( z  +o  x ) ) ,  (/) ) `  y )  e.  _V )
71, 6ax-mp 7 . . 3  |-  ( rec ( ( z  e. 
_V  |->  ( z  +o  x ) ) ,  (/) ) `  y )  e.  _V
87gen2 1394 . 2  |-  A. x A. y ( rec (
( z  e.  _V  |->  ( z  +o  x
) ) ,  (/) ) `  y )  e.  _V
9 df-omul 6248 . . 3  |-  .o  =  ( x  e.  On ,  y  e.  On  |->  ( rec ( ( z  e.  _V  |->  ( z  +o  x ) ) ,  (/) ) `  y
) )
109mpofvex 6031 . 2  |-  ( ( A. x A. y
( rec ( ( z  e.  _V  |->  ( z  +o  x ) ) ,  (/) ) `  y )  e.  _V  /\  A  e.  V  /\  B  e.  W )  ->  ( A  .o  B
)  e.  _V )
118, 10mp3an1 1270 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  .o  B
)  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1297    e. wcel 1448   _Vcvv 2641   (/)c0 3310    |-> cmpt 3929   Oncon0 4223    Fn wfn 5054   ` cfv 5059  (class class class)co 5706   reccrdg 6196    +o coa 6240    .o comu 6241
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-iord 4226  df-on 4228  df-suc 4231  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-irdg 6197  df-oadd 6247  df-omul 6248
This theorem is referenced by:  fnoei  6278  oeiexg  6279  oeiv  6282  omv2  6291
  Copyright terms: Public domain W3C validator