Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > omexg | Unicode version |
Description: Ordinal multiplication is a set. (Contributed by Mario Carneiro, 3-Jul-2019.) |
Ref | Expression |
---|---|
omexg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2738 | . . . 4 | |
2 | 0ex 4125 | . . . . 5 | |
3 | vex 2738 | . . . . . 6 | |
4 | omfnex 6440 | . . . . . 6 | |
5 | 3, 4 | ax-mp 5 | . . . . 5 |
6 | 2, 5 | rdgexg 6380 | . . . 4 |
7 | 1, 6 | ax-mp 5 | . . 3 |
8 | 7 | gen2 1448 | . 2 |
9 | df-omul 6412 | . . 3 | |
10 | 9 | mpofvex 6194 | . 2 |
11 | 8, 10 | mp3an1 1324 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wal 1351 wcel 2146 cvv 2735 c0 3420 cmpt 4059 con0 4357 wfn 5203 cfv 5208 (class class class)co 5865 crdg 6360 coa 6404 comu 6405 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-id 4287 df-iord 4360 df-on 4362 df-suc 4365 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-recs 6296 df-irdg 6361 df-oadd 6411 df-omul 6412 |
This theorem is referenced by: fnoei 6443 oeiexg 6444 oeiv 6447 omv2 6456 |
Copyright terms: Public domain | W3C validator |