ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnom Unicode version

Theorem fnom 6251
Description: Functionality and domain of ordinal multiplication. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 3-Jul-2019.)
Assertion
Ref Expression
fnom  |-  .o  Fn  ( On  X.  On )

Proof of Theorem fnom
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-omul 6224 . 2  |-  .o  =  ( x  e.  On ,  y  e.  On  |->  ( rec ( ( z  e.  _V  |->  ( z  +o  x ) ) ,  (/) ) `  y
) )
2 vex 2636 . . 3  |-  y  e. 
_V
3 0ex 3987 . . . 4  |-  (/)  e.  _V
4 vex 2636 . . . . 5  |-  x  e. 
_V
5 omfnex 6250 . . . . 5  |-  ( x  e.  _V  ->  (
z  e.  _V  |->  ( z  +o  x ) )  Fn  _V )
64, 5ax-mp 7 . . . 4  |-  ( z  e.  _V  |->  ( z  +o  x ) )  Fn  _V
73, 6rdgexg 6192 . . 3  |-  ( y  e.  _V  ->  ( rec ( ( z  e. 
_V  |->  ( z  +o  x ) ) ,  (/) ) `  y )  e.  _V )
82, 7ax-mp 7 . 2  |-  ( rec ( ( z  e. 
_V  |->  ( z  +o  x ) ) ,  (/) ) `  y )  e.  _V
91, 8fnmpt2i 6012 1  |-  .o  Fn  ( On  X.  On )
Colors of variables: wff set class
Syntax hints:    e. wcel 1445   _Vcvv 2633   (/)c0 3302    |-> cmpt 3921   Oncon0 4214    X. cxp 4465    Fn wfn 5044   ` cfv 5049  (class class class)co 5690   reccrdg 6172    +o coa 6216    .o comu 6217
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-coll 3975  ax-sep 3978  ax-nul 3986  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-ral 2375  df-rex 2376  df-reu 2377  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-tr 3959  df-id 4144  df-iord 4217  df-on 4219  df-suc 4222  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-1st 5949  df-2nd 5950  df-recs 6108  df-irdg 6173  df-oadd 6223  df-omul 6224
This theorem is referenced by:  dmmulpi  6982
  Copyright terms: Public domain W3C validator