Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rdgexg | GIF version |
Description: The recursive definition generator produces a set on a set input. (Contributed by Mario Carneiro, 3-Jul-2019.) |
Ref | Expression |
---|---|
rdg0.1 | ⊢ 𝐴 ∈ V |
rdg0.2 | ⊢ 𝐹 Fn V |
Ref | Expression |
---|---|
rdgexg | ⊢ (𝐵 ∈ 𝑉 → (rec(𝐹, 𝐴)‘𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rdg0.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | rdg0.2 | . . 3 ⊢ 𝐹 Fn V | |
3 | 2 | rdgexgg 6340 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉) → (rec(𝐹, 𝐴)‘𝐵) ∈ V) |
4 | 1, 3 | mpan 421 | 1 ⊢ (𝐵 ∈ 𝑉 → (rec(𝐹, 𝐴)‘𝐵) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2135 Vcvv 2724 Fn wfn 5180 ‘cfv 5185 reccrdg 6331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-13 2137 ax-14 2138 ax-ext 2146 ax-coll 4094 ax-sep 4097 ax-pow 4150 ax-pr 4184 ax-un 4408 ax-setind 4511 |
This theorem depends on definitions: df-bi 116 df-3an 969 df-tru 1345 df-fal 1348 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ne 2335 df-ral 2447 df-rex 2448 df-reu 2449 df-rab 2451 df-v 2726 df-sbc 2950 df-csb 3044 df-dif 3116 df-un 3118 df-in 3120 df-ss 3127 df-nul 3408 df-pw 3558 df-sn 3579 df-pr 3580 df-op 3582 df-uni 3787 df-iun 3865 df-br 3980 df-opab 4041 df-mpt 4042 df-tr 4078 df-id 4268 df-iord 4341 df-on 4343 df-suc 4346 df-xp 4607 df-rel 4608 df-cnv 4609 df-co 4610 df-dm 4611 df-rn 4612 df-res 4613 df-ima 4614 df-iota 5150 df-fun 5187 df-fn 5188 df-f 5189 df-f1 5190 df-fo 5191 df-f1o 5192 df-fv 5193 df-recs 6267 df-irdg 6332 |
This theorem is referenced by: fnoa 6409 oaexg 6410 fnom 6412 omexg 6413 fnoei 6414 oeiexg 6415 |
Copyright terms: Public domain | W3C validator |