| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rdgexg | GIF version | ||
| Description: The recursive definition generator produces a set on a set input. (Contributed by Mario Carneiro, 3-Jul-2019.) |
| Ref | Expression |
|---|---|
| rdg0.1 | ⊢ 𝐴 ∈ V |
| rdg0.2 | ⊢ 𝐹 Fn V |
| Ref | Expression |
|---|---|
| rdgexg | ⊢ (𝐵 ∈ 𝑉 → (rec(𝐹, 𝐴)‘𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdg0.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | rdg0.2 | . . 3 ⊢ 𝐹 Fn V | |
| 3 | 2 | rdgexgg 6494 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉) → (rec(𝐹, 𝐴)‘𝐵) ∈ V) |
| 4 | 1, 3 | mpan 424 | 1 ⊢ (𝐵 ∈ 𝑉 → (rec(𝐹, 𝐴)‘𝐵) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2180 Vcvv 2779 Fn wfn 5289 ‘cfv 5294 reccrdg 6485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-iord 4434 df-on 4436 df-suc 4439 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-recs 6421 df-irdg 6486 |
| This theorem is referenced by: fnoa 6563 oaexg 6564 fnom 6566 omexg 6567 fnoei 6568 oeiexg 6569 |
| Copyright terms: Public domain | W3C validator |