Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mndinvmod | Unicode version |
Description: Uniqueness of an inverse element in a monoid, if it exists. (Contributed by AV, 20-Jan-2024.) |
Ref | Expression |
---|---|
mndinvmod.b | |
mndinvmod.0 | |
mndinvmod.p | |
mndinvmod.m | |
mndinvmod.a |
Ref | Expression |
---|---|
mndinvmod |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndinvmod.m | . . . . . . . 8 | |
2 | simpl 109 | . . . . . . . 8 | |
3 | mndinvmod.b | . . . . . . . . 9 | |
4 | mndinvmod.p | . . . . . . . . 9 | |
5 | mndinvmod.0 | . . . . . . . . 9 | |
6 | 3, 4, 5 | mndrid 12701 | . . . . . . . 8 |
7 | 1, 2, 6 | syl2an 289 | . . . . . . 7 |
8 | 7 | eqcomd 2181 | . . . . . 6 |
9 | 8 | adantr 276 | . . . . 5 |
10 | oveq2 5873 | . . . . . . . . 9 | |
11 | 10 | eqcoms 2178 | . . . . . . . 8 |
12 | 11 | adantl 277 | . . . . . . 7 |
13 | 12 | adantl 277 | . . . . . 6 |
14 | 13 | adantl 277 | . . . . 5 |
15 | 1 | adantr 276 | . . . . . . . 8 |
16 | 2 | adantl 277 | . . . . . . . 8 |
17 | mndinvmod.a | . . . . . . . . 9 | |
18 | 17 | adantr 276 | . . . . . . . 8 |
19 | simpr 110 | . . . . . . . . 9 | |
20 | 19 | adantl 277 | . . . . . . . 8 |
21 | 3, 4 | mndass 12689 | . . . . . . . . 9 |
22 | 21 | eqcomd 2181 | . . . . . . . 8 |
23 | 15, 16, 18, 20, 22 | syl13anc 1240 | . . . . . . 7 |
24 | 23 | adantr 276 | . . . . . 6 |
25 | oveq1 5872 | . . . . . . . . 9 | |
26 | 25 | adantr 276 | . . . . . . . 8 |
27 | 26 | adantr 276 | . . . . . . 7 |
28 | 27 | adantl 277 | . . . . . 6 |
29 | 3, 4, 5 | mndlid 12700 | . . . . . . . 8 |
30 | 1, 19, 29 | syl2an 289 | . . . . . . 7 |
31 | 30 | adantr 276 | . . . . . 6 |
32 | 24, 28, 31 | 3eqtrd 2212 | . . . . 5 |
33 | 9, 14, 32 | 3eqtrd 2212 | . . . 4 |
34 | 33 | ex 115 | . . 3 |
35 | 34 | ralrimivva 2557 | . 2 |
36 | oveq1 5872 | . . . . 5 | |
37 | 36 | eqeq1d 2184 | . . . 4 |
38 | oveq2 5873 | . . . . 5 | |
39 | 38 | eqeq1d 2184 | . . . 4 |
40 | 37, 39 | anbi12d 473 | . . 3 |
41 | 40 | rmo4 2928 | . 2 |
42 | 35, 41 | sylibr 134 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 w3a 978 wceq 1353 wcel 2146 wral 2453 wrmo 2456 cfv 5208 (class class class)co 5865 cbs 12427 cplusg 12491 c0g 12625 cmnd 12681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-cnex 7877 ax-resscn 7878 ax-1re 7880 ax-addrcl 7883 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-iota 5170 df-fun 5210 df-fn 5211 df-fv 5216 df-riota 5821 df-ov 5868 df-inn 8891 df-2 8949 df-ndx 12430 df-slot 12431 df-base 12433 df-plusg 12504 df-0g 12627 df-mgm 12639 df-sgrp 12672 df-mnd 12682 |
This theorem is referenced by: rinvmod 12908 |
Copyright terms: Public domain | W3C validator |