| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mndinvmod | Unicode version | ||
| Description: Uniqueness of an inverse element in a monoid, if it exists. (Contributed by AV, 20-Jan-2024.) |
| Ref | Expression |
|---|---|
| mndinvmod.b |
|
| mndinvmod.0 |
|
| mndinvmod.p |
|
| mndinvmod.m |
|
| mndinvmod.a |
|
| Ref | Expression |
|---|---|
| mndinvmod |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndinvmod.m |
. . . . . . . 8
| |
| 2 | simpl 109 |
. . . . . . . 8
| |
| 3 | mndinvmod.b |
. . . . . . . . 9
| |
| 4 | mndinvmod.p |
. . . . . . . . 9
| |
| 5 | mndinvmod.0 |
. . . . . . . . 9
| |
| 6 | 3, 4, 5 | mndrid 13343 |
. . . . . . . 8
|
| 7 | 1, 2, 6 | syl2an 289 |
. . . . . . 7
|
| 8 | 7 | eqcomd 2212 |
. . . . . 6
|
| 9 | 8 | adantr 276 |
. . . . 5
|
| 10 | oveq2 5965 |
. . . . . . . . 9
| |
| 11 | 10 | eqcoms 2209 |
. . . . . . . 8
|
| 12 | 11 | adantl 277 |
. . . . . . 7
|
| 13 | 12 | adantl 277 |
. . . . . 6
|
| 14 | 13 | adantl 277 |
. . . . 5
|
| 15 | 1 | adantr 276 |
. . . . . . . 8
|
| 16 | 2 | adantl 277 |
. . . . . . . 8
|
| 17 | mndinvmod.a |
. . . . . . . . 9
| |
| 18 | 17 | adantr 276 |
. . . . . . . 8
|
| 19 | simpr 110 |
. . . . . . . . 9
| |
| 20 | 19 | adantl 277 |
. . . . . . . 8
|
| 21 | 3, 4 | mndass 13331 |
. . . . . . . . 9
|
| 22 | 21 | eqcomd 2212 |
. . . . . . . 8
|
| 23 | 15, 16, 18, 20, 22 | syl13anc 1252 |
. . . . . . 7
|
| 24 | 23 | adantr 276 |
. . . . . 6
|
| 25 | oveq1 5964 |
. . . . . . . . 9
| |
| 26 | 25 | adantr 276 |
. . . . . . . 8
|
| 27 | 26 | adantr 276 |
. . . . . . 7
|
| 28 | 27 | adantl 277 |
. . . . . 6
|
| 29 | 3, 4, 5 | mndlid 13342 |
. . . . . . . 8
|
| 30 | 1, 19, 29 | syl2an 289 |
. . . . . . 7
|
| 31 | 30 | adantr 276 |
. . . . . 6
|
| 32 | 24, 28, 31 | 3eqtrd 2243 |
. . . . 5
|
| 33 | 9, 14, 32 | 3eqtrd 2243 |
. . . 4
|
| 34 | 33 | ex 115 |
. . 3
|
| 35 | 34 | ralrimivva 2589 |
. 2
|
| 36 | oveq1 5964 |
. . . . 5
| |
| 37 | 36 | eqeq1d 2215 |
. . . 4
|
| 38 | oveq2 5965 |
. . . . 5
| |
| 39 | 38 | eqeq1d 2215 |
. . . 4
|
| 40 | 37, 39 | anbi12d 473 |
. . 3
|
| 41 | 40 | rmo4 2970 |
. 2
|
| 42 | 35, 41 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-iota 5241 df-fun 5282 df-fn 5283 df-fv 5288 df-riota 5912 df-ov 5960 df-inn 9057 df-2 9115 df-ndx 12910 df-slot 12911 df-base 12913 df-plusg 12997 df-0g 13165 df-mgm 13263 df-sgrp 13309 df-mnd 13324 |
| This theorem is referenced by: rinvmod 13720 |
| Copyright terms: Public domain | W3C validator |