Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mndinvmod | Unicode version |
Description: Uniqueness of an inverse element in a monoid, if it exists. (Contributed by AV, 20-Jan-2024.) |
Ref | Expression |
---|---|
mndinvmod.b | |
mndinvmod.0 | |
mndinvmod.p | |
mndinvmod.m | |
mndinvmod.a |
Ref | Expression |
---|---|
mndinvmod |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndinvmod.m | . . . . . . . 8 | |
2 | simpl 108 | . . . . . . . 8 | |
3 | mndinvmod.b | . . . . . . . . 9 | |
4 | mndinvmod.p | . . . . . . . . 9 | |
5 | mndinvmod.0 | . . . . . . . . 9 | |
6 | 3, 4, 5 | mndrid 12672 | . . . . . . . 8 |
7 | 1, 2, 6 | syl2an 287 | . . . . . . 7 |
8 | 7 | eqcomd 2176 | . . . . . 6 |
9 | 8 | adantr 274 | . . . . 5 |
10 | oveq2 5861 | . . . . . . . . 9 | |
11 | 10 | eqcoms 2173 | . . . . . . . 8 |
12 | 11 | adantl 275 | . . . . . . 7 |
13 | 12 | adantl 275 | . . . . . 6 |
14 | 13 | adantl 275 | . . . . 5 |
15 | 1 | adantr 274 | . . . . . . . 8 |
16 | 2 | adantl 275 | . . . . . . . 8 |
17 | mndinvmod.a | . . . . . . . . 9 | |
18 | 17 | adantr 274 | . . . . . . . 8 |
19 | simpr 109 | . . . . . . . . 9 | |
20 | 19 | adantl 275 | . . . . . . . 8 |
21 | 3, 4 | mndass 12660 | . . . . . . . . 9 |
22 | 21 | eqcomd 2176 | . . . . . . . 8 |
23 | 15, 16, 18, 20, 22 | syl13anc 1235 | . . . . . . 7 |
24 | 23 | adantr 274 | . . . . . 6 |
25 | oveq1 5860 | . . . . . . . . 9 | |
26 | 25 | adantr 274 | . . . . . . . 8 |
27 | 26 | adantr 274 | . . . . . . 7 |
28 | 27 | adantl 275 | . . . . . 6 |
29 | 3, 4, 5 | mndlid 12671 | . . . . . . . 8 |
30 | 1, 19, 29 | syl2an 287 | . . . . . . 7 |
31 | 30 | adantr 274 | . . . . . 6 |
32 | 24, 28, 31 | 3eqtrd 2207 | . . . . 5 |
33 | 9, 14, 32 | 3eqtrd 2207 | . . . 4 |
34 | 33 | ex 114 | . . 3 |
35 | 34 | ralrimivva 2552 | . 2 |
36 | oveq1 5860 | . . . . 5 | |
37 | 36 | eqeq1d 2179 | . . . 4 |
38 | oveq2 5861 | . . . . 5 | |
39 | 38 | eqeq1d 2179 | . . . 4 |
40 | 37, 39 | anbi12d 470 | . . 3 |
41 | 40 | rmo4 2923 | . 2 |
42 | 35, 41 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 wceq 1348 wcel 2141 wral 2448 wrmo 2451 cfv 5198 (class class class)co 5853 cbs 12416 cplusg 12480 c0g 12596 cmnd 12652 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-iota 5160 df-fun 5200 df-fn 5201 df-fv 5206 df-riota 5809 df-ov 5856 df-inn 8879 df-2 8937 df-ndx 12419 df-slot 12420 df-base 12422 df-plusg 12493 df-0g 12598 df-mgm 12610 df-sgrp 12643 df-mnd 12653 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |