ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mndinvmod Unicode version

Theorem mndinvmod 12707
Description: Uniqueness of an inverse element in a monoid, if it exists. (Contributed by AV, 20-Jan-2024.)
Hypotheses
Ref Expression
mndinvmod.b  |-  B  =  ( Base `  G
)
mndinvmod.0  |-  .0.  =  ( 0g `  G )
mndinvmod.p  |-  .+  =  ( +g  `  G )
mndinvmod.m  |-  ( ph  ->  G  e.  Mnd )
mndinvmod.a  |-  ( ph  ->  A  e.  B )
Assertion
Ref Expression
mndinvmod  |-  ( ph  ->  E* w  e.  B  ( ( w  .+  A )  =  .0. 
/\  ( A  .+  w )  =  .0.  ) )
Distinct variable groups:    w, A    w, B    w,  .0.    w,  .+    ph, w
Allowed substitution hint:    G( w)

Proof of Theorem mndinvmod
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 mndinvmod.m . . . . . . . 8  |-  ( ph  ->  G  e.  Mnd )
2 simpl 109 . . . . . . . 8  |-  ( ( w  e.  B  /\  v  e.  B )  ->  w  e.  B )
3 mndinvmod.b . . . . . . . . 9  |-  B  =  ( Base `  G
)
4 mndinvmod.p . . . . . . . . 9  |-  .+  =  ( +g  `  G )
5 mndinvmod.0 . . . . . . . . 9  |-  .0.  =  ( 0g `  G )
63, 4, 5mndrid 12701 . . . . . . . 8  |-  ( ( G  e.  Mnd  /\  w  e.  B )  ->  ( w  .+  .0.  )  =  w )
71, 2, 6syl2an 289 . . . . . . 7  |-  ( (
ph  /\  ( w  e.  B  /\  v  e.  B ) )  -> 
( w  .+  .0.  )  =  w )
87eqcomd 2181 . . . . . 6  |-  ( (
ph  /\  ( w  e.  B  /\  v  e.  B ) )  ->  w  =  ( w  .+  .0.  ) )
98adantr 276 . . . . 5  |-  ( ( ( ph  /\  (
w  e.  B  /\  v  e.  B )
)  /\  ( (
( w  .+  A
)  =  .0.  /\  ( A  .+  w )  =  .0.  )  /\  ( ( v  .+  A )  =  .0. 
/\  ( A  .+  v )  =  .0.  ) ) )  ->  w  =  ( w  .+  .0.  ) )
10 oveq2 5873 . . . . . . . . 9  |-  (  .0.  =  ( A  .+  v )  ->  (
w  .+  .0.  )  =  ( w  .+  ( A  .+  v ) ) )
1110eqcoms 2178 . . . . . . . 8  |-  ( ( A  .+  v )  =  .0.  ->  (
w  .+  .0.  )  =  ( w  .+  ( A  .+  v ) ) )
1211adantl 277 . . . . . . 7  |-  ( ( ( v  .+  A
)  =  .0.  /\  ( A  .+  v )  =  .0.  )  -> 
( w  .+  .0.  )  =  ( w  .+  ( A  .+  v
) ) )
1312adantl 277 . . . . . 6  |-  ( ( ( ( w  .+  A )  =  .0. 
/\  ( A  .+  w )  =  .0.  )  /\  ( ( v  .+  A )  =  .0.  /\  ( A  .+  v )  =  .0.  ) )  -> 
( w  .+  .0.  )  =  ( w  .+  ( A  .+  v
) ) )
1413adantl 277 . . . . 5  |-  ( ( ( ph  /\  (
w  e.  B  /\  v  e.  B )
)  /\  ( (
( w  .+  A
)  =  .0.  /\  ( A  .+  w )  =  .0.  )  /\  ( ( v  .+  A )  =  .0. 
/\  ( A  .+  v )  =  .0.  ) ) )  -> 
( w  .+  .0.  )  =  ( w  .+  ( A  .+  v
) ) )
151adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( w  e.  B  /\  v  e.  B ) )  ->  G  e.  Mnd )
162adantl 277 . . . . . . . 8  |-  ( (
ph  /\  ( w  e.  B  /\  v  e.  B ) )  ->  w  e.  B )
17 mndinvmod.a . . . . . . . . 9  |-  ( ph  ->  A  e.  B )
1817adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( w  e.  B  /\  v  e.  B ) )  ->  A  e.  B )
19 simpr 110 . . . . . . . . 9  |-  ( ( w  e.  B  /\  v  e.  B )  ->  v  e.  B )
2019adantl 277 . . . . . . . 8  |-  ( (
ph  /\  ( w  e.  B  /\  v  e.  B ) )  -> 
v  e.  B )
213, 4mndass 12689 . . . . . . . . 9  |-  ( ( G  e.  Mnd  /\  ( w  e.  B  /\  A  e.  B  /\  v  e.  B
) )  ->  (
( w  .+  A
)  .+  v )  =  ( w  .+  ( A  .+  v ) ) )
2221eqcomd 2181 . . . . . . . 8  |-  ( ( G  e.  Mnd  /\  ( w  e.  B  /\  A  e.  B  /\  v  e.  B
) )  ->  (
w  .+  ( A  .+  v ) )  =  ( ( w  .+  A )  .+  v
) )
2315, 16, 18, 20, 22syl13anc 1240 . . . . . . 7  |-  ( (
ph  /\  ( w  e.  B  /\  v  e.  B ) )  -> 
( w  .+  ( A  .+  v ) )  =  ( ( w 
.+  A )  .+  v ) )
2423adantr 276 . . . . . 6  |-  ( ( ( ph  /\  (
w  e.  B  /\  v  e.  B )
)  /\  ( (
( w  .+  A
)  =  .0.  /\  ( A  .+  w )  =  .0.  )  /\  ( ( v  .+  A )  =  .0. 
/\  ( A  .+  v )  =  .0.  ) ) )  -> 
( w  .+  ( A  .+  v ) )  =  ( ( w 
.+  A )  .+  v ) )
25 oveq1 5872 . . . . . . . . 9  |-  ( ( w  .+  A )  =  .0.  ->  (
( w  .+  A
)  .+  v )  =  (  .0.  .+  v
) )
2625adantr 276 . . . . . . . 8  |-  ( ( ( w  .+  A
)  =  .0.  /\  ( A  .+  w )  =  .0.  )  -> 
( ( w  .+  A )  .+  v
)  =  (  .0.  .+  v ) )
2726adantr 276 . . . . . . 7  |-  ( ( ( ( w  .+  A )  =  .0. 
/\  ( A  .+  w )  =  .0.  )  /\  ( ( v  .+  A )  =  .0.  /\  ( A  .+  v )  =  .0.  ) )  -> 
( ( w  .+  A )  .+  v
)  =  (  .0.  .+  v ) )
2827adantl 277 . . . . . 6  |-  ( ( ( ph  /\  (
w  e.  B  /\  v  e.  B )
)  /\  ( (
( w  .+  A
)  =  .0.  /\  ( A  .+  w )  =  .0.  )  /\  ( ( v  .+  A )  =  .0. 
/\  ( A  .+  v )  =  .0.  ) ) )  -> 
( ( w  .+  A )  .+  v
)  =  (  .0.  .+  v ) )
293, 4, 5mndlid 12700 . . . . . . . 8  |-  ( ( G  e.  Mnd  /\  v  e.  B )  ->  (  .0.  .+  v
)  =  v )
301, 19, 29syl2an 289 . . . . . . 7  |-  ( (
ph  /\  ( w  e.  B  /\  v  e.  B ) )  -> 
(  .0.  .+  v
)  =  v )
3130adantr 276 . . . . . 6  |-  ( ( ( ph  /\  (
w  e.  B  /\  v  e.  B )
)  /\  ( (
( w  .+  A
)  =  .0.  /\  ( A  .+  w )  =  .0.  )  /\  ( ( v  .+  A )  =  .0. 
/\  ( A  .+  v )  =  .0.  ) ) )  -> 
(  .0.  .+  v
)  =  v )
3224, 28, 313eqtrd 2212 . . . . 5  |-  ( ( ( ph  /\  (
w  e.  B  /\  v  e.  B )
)  /\  ( (
( w  .+  A
)  =  .0.  /\  ( A  .+  w )  =  .0.  )  /\  ( ( v  .+  A )  =  .0. 
/\  ( A  .+  v )  =  .0.  ) ) )  -> 
( w  .+  ( A  .+  v ) )  =  v )
339, 14, 323eqtrd 2212 . . . 4  |-  ( ( ( ph  /\  (
w  e.  B  /\  v  e.  B )
)  /\  ( (
( w  .+  A
)  =  .0.  /\  ( A  .+  w )  =  .0.  )  /\  ( ( v  .+  A )  =  .0. 
/\  ( A  .+  v )  =  .0.  ) ) )  ->  w  =  v )
3433ex 115 . . 3  |-  ( (
ph  /\  ( w  e.  B  /\  v  e.  B ) )  -> 
( ( ( ( w  .+  A )  =  .0.  /\  ( A  .+  w )  =  .0.  )  /\  (
( v  .+  A
)  =  .0.  /\  ( A  .+  v )  =  .0.  ) )  ->  w  =  v ) )
3534ralrimivva 2557 . 2  |-  ( ph  ->  A. w  e.  B  A. v  e.  B  ( ( ( ( w  .+  A )  =  .0.  /\  ( A  .+  w )  =  .0.  )  /\  (
( v  .+  A
)  =  .0.  /\  ( A  .+  v )  =  .0.  ) )  ->  w  =  v ) )
36 oveq1 5872 . . . . 5  |-  ( w  =  v  ->  (
w  .+  A )  =  ( v  .+  A ) )
3736eqeq1d 2184 . . . 4  |-  ( w  =  v  ->  (
( w  .+  A
)  =  .0.  <->  ( v  .+  A )  =  .0.  ) )
38 oveq2 5873 . . . . 5  |-  ( w  =  v  ->  ( A  .+  w )  =  ( A  .+  v
) )
3938eqeq1d 2184 . . . 4  |-  ( w  =  v  ->  (
( A  .+  w
)  =  .0.  <->  ( A  .+  v )  =  .0.  ) )
4037, 39anbi12d 473 . . 3  |-  ( w  =  v  ->  (
( ( w  .+  A )  =  .0. 
/\  ( A  .+  w )  =  .0.  )  <->  ( ( v 
.+  A )  =  .0.  /\  ( A 
.+  v )  =  .0.  ) ) )
4140rmo4 2928 . 2  |-  ( E* w  e.  B  ( ( w  .+  A
)  =  .0.  /\  ( A  .+  w )  =  .0.  )  <->  A. w  e.  B  A. v  e.  B  ( (
( ( w  .+  A )  =  .0. 
/\  ( A  .+  w )  =  .0.  )  /\  ( ( v  .+  A )  =  .0.  /\  ( A  .+  v )  =  .0.  ) )  ->  w  =  v )
)
4235, 41sylibr 134 1  |-  ( ph  ->  E* w  e.  B  ( ( w  .+  A )  =  .0. 
/\  ( A  .+  w )  =  .0.  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2146   A.wral 2453   E*wrmo 2456   ` cfv 5208  (class class class)co 5865   Basecbs 12427   +g cplusg 12491   0gc0g 12625   Mndcmnd 12681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-cnex 7877  ax-resscn 7878  ax-1re 7880  ax-addrcl 7883
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-iota 5170  df-fun 5210  df-fn 5211  df-fv 5216  df-riota 5821  df-ov 5868  df-inn 8891  df-2 8949  df-ndx 12430  df-slot 12431  df-base 12433  df-plusg 12504  df-0g 12627  df-mgm 12639  df-sgrp 12672  df-mnd 12682
This theorem is referenced by:  rinvmod  12908
  Copyright terms: Public domain W3C validator