ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mndinvmod Unicode version

Theorem mndinvmod 13086
Description: Uniqueness of an inverse element in a monoid, if it exists. (Contributed by AV, 20-Jan-2024.)
Hypotheses
Ref Expression
mndinvmod.b  |-  B  =  ( Base `  G
)
mndinvmod.0  |-  .0.  =  ( 0g `  G )
mndinvmod.p  |-  .+  =  ( +g  `  G )
mndinvmod.m  |-  ( ph  ->  G  e.  Mnd )
mndinvmod.a  |-  ( ph  ->  A  e.  B )
Assertion
Ref Expression
mndinvmod  |-  ( ph  ->  E* w  e.  B  ( ( w  .+  A )  =  .0. 
/\  ( A  .+  w )  =  .0.  ) )
Distinct variable groups:    w, A    w, B    w,  .0.    w,  .+    ph, w
Allowed substitution hint:    G( w)

Proof of Theorem mndinvmod
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 mndinvmod.m . . . . . . . 8  |-  ( ph  ->  G  e.  Mnd )
2 simpl 109 . . . . . . . 8  |-  ( ( w  e.  B  /\  v  e.  B )  ->  w  e.  B )
3 mndinvmod.b . . . . . . . . 9  |-  B  =  ( Base `  G
)
4 mndinvmod.p . . . . . . . . 9  |-  .+  =  ( +g  `  G )
5 mndinvmod.0 . . . . . . . . 9  |-  .0.  =  ( 0g `  G )
63, 4, 5mndrid 13077 . . . . . . . 8  |-  ( ( G  e.  Mnd  /\  w  e.  B )  ->  ( w  .+  .0.  )  =  w )
71, 2, 6syl2an 289 . . . . . . 7  |-  ( (
ph  /\  ( w  e.  B  /\  v  e.  B ) )  -> 
( w  .+  .0.  )  =  w )
87eqcomd 2202 . . . . . 6  |-  ( (
ph  /\  ( w  e.  B  /\  v  e.  B ) )  ->  w  =  ( w  .+  .0.  ) )
98adantr 276 . . . . 5  |-  ( ( ( ph  /\  (
w  e.  B  /\  v  e.  B )
)  /\  ( (
( w  .+  A
)  =  .0.  /\  ( A  .+  w )  =  .0.  )  /\  ( ( v  .+  A )  =  .0. 
/\  ( A  .+  v )  =  .0.  ) ) )  ->  w  =  ( w  .+  .0.  ) )
10 oveq2 5930 . . . . . . . . 9  |-  (  .0.  =  ( A  .+  v )  ->  (
w  .+  .0.  )  =  ( w  .+  ( A  .+  v ) ) )
1110eqcoms 2199 . . . . . . . 8  |-  ( ( A  .+  v )  =  .0.  ->  (
w  .+  .0.  )  =  ( w  .+  ( A  .+  v ) ) )
1211adantl 277 . . . . . . 7  |-  ( ( ( v  .+  A
)  =  .0.  /\  ( A  .+  v )  =  .0.  )  -> 
( w  .+  .0.  )  =  ( w  .+  ( A  .+  v
) ) )
1312adantl 277 . . . . . 6  |-  ( ( ( ( w  .+  A )  =  .0. 
/\  ( A  .+  w )  =  .0.  )  /\  ( ( v  .+  A )  =  .0.  /\  ( A  .+  v )  =  .0.  ) )  -> 
( w  .+  .0.  )  =  ( w  .+  ( A  .+  v
) ) )
1413adantl 277 . . . . 5  |-  ( ( ( ph  /\  (
w  e.  B  /\  v  e.  B )
)  /\  ( (
( w  .+  A
)  =  .0.  /\  ( A  .+  w )  =  .0.  )  /\  ( ( v  .+  A )  =  .0. 
/\  ( A  .+  v )  =  .0.  ) ) )  -> 
( w  .+  .0.  )  =  ( w  .+  ( A  .+  v
) ) )
151adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( w  e.  B  /\  v  e.  B ) )  ->  G  e.  Mnd )
162adantl 277 . . . . . . . 8  |-  ( (
ph  /\  ( w  e.  B  /\  v  e.  B ) )  ->  w  e.  B )
17 mndinvmod.a . . . . . . . . 9  |-  ( ph  ->  A  e.  B )
1817adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( w  e.  B  /\  v  e.  B ) )  ->  A  e.  B )
19 simpr 110 . . . . . . . . 9  |-  ( ( w  e.  B  /\  v  e.  B )  ->  v  e.  B )
2019adantl 277 . . . . . . . 8  |-  ( (
ph  /\  ( w  e.  B  /\  v  e.  B ) )  -> 
v  e.  B )
213, 4mndass 13065 . . . . . . . . 9  |-  ( ( G  e.  Mnd  /\  ( w  e.  B  /\  A  e.  B  /\  v  e.  B
) )  ->  (
( w  .+  A
)  .+  v )  =  ( w  .+  ( A  .+  v ) ) )
2221eqcomd 2202 . . . . . . . 8  |-  ( ( G  e.  Mnd  /\  ( w  e.  B  /\  A  e.  B  /\  v  e.  B
) )  ->  (
w  .+  ( A  .+  v ) )  =  ( ( w  .+  A )  .+  v
) )
2315, 16, 18, 20, 22syl13anc 1251 . . . . . . 7  |-  ( (
ph  /\  ( w  e.  B  /\  v  e.  B ) )  -> 
( w  .+  ( A  .+  v ) )  =  ( ( w 
.+  A )  .+  v ) )
2423adantr 276 . . . . . 6  |-  ( ( ( ph  /\  (
w  e.  B  /\  v  e.  B )
)  /\  ( (
( w  .+  A
)  =  .0.  /\  ( A  .+  w )  =  .0.  )  /\  ( ( v  .+  A )  =  .0. 
/\  ( A  .+  v )  =  .0.  ) ) )  -> 
( w  .+  ( A  .+  v ) )  =  ( ( w 
.+  A )  .+  v ) )
25 oveq1 5929 . . . . . . . . 9  |-  ( ( w  .+  A )  =  .0.  ->  (
( w  .+  A
)  .+  v )  =  (  .0.  .+  v
) )
2625adantr 276 . . . . . . . 8  |-  ( ( ( w  .+  A
)  =  .0.  /\  ( A  .+  w )  =  .0.  )  -> 
( ( w  .+  A )  .+  v
)  =  (  .0.  .+  v ) )
2726adantr 276 . . . . . . 7  |-  ( ( ( ( w  .+  A )  =  .0. 
/\  ( A  .+  w )  =  .0.  )  /\  ( ( v  .+  A )  =  .0.  /\  ( A  .+  v )  =  .0.  ) )  -> 
( ( w  .+  A )  .+  v
)  =  (  .0.  .+  v ) )
2827adantl 277 . . . . . 6  |-  ( ( ( ph  /\  (
w  e.  B  /\  v  e.  B )
)  /\  ( (
( w  .+  A
)  =  .0.  /\  ( A  .+  w )  =  .0.  )  /\  ( ( v  .+  A )  =  .0. 
/\  ( A  .+  v )  =  .0.  ) ) )  -> 
( ( w  .+  A )  .+  v
)  =  (  .0.  .+  v ) )
293, 4, 5mndlid 13076 . . . . . . . 8  |-  ( ( G  e.  Mnd  /\  v  e.  B )  ->  (  .0.  .+  v
)  =  v )
301, 19, 29syl2an 289 . . . . . . 7  |-  ( (
ph  /\  ( w  e.  B  /\  v  e.  B ) )  -> 
(  .0.  .+  v
)  =  v )
3130adantr 276 . . . . . 6  |-  ( ( ( ph  /\  (
w  e.  B  /\  v  e.  B )
)  /\  ( (
( w  .+  A
)  =  .0.  /\  ( A  .+  w )  =  .0.  )  /\  ( ( v  .+  A )  =  .0. 
/\  ( A  .+  v )  =  .0.  ) ) )  -> 
(  .0.  .+  v
)  =  v )
3224, 28, 313eqtrd 2233 . . . . 5  |-  ( ( ( ph  /\  (
w  e.  B  /\  v  e.  B )
)  /\  ( (
( w  .+  A
)  =  .0.  /\  ( A  .+  w )  =  .0.  )  /\  ( ( v  .+  A )  =  .0. 
/\  ( A  .+  v )  =  .0.  ) ) )  -> 
( w  .+  ( A  .+  v ) )  =  v )
339, 14, 323eqtrd 2233 . . . 4  |-  ( ( ( ph  /\  (
w  e.  B  /\  v  e.  B )
)  /\  ( (
( w  .+  A
)  =  .0.  /\  ( A  .+  w )  =  .0.  )  /\  ( ( v  .+  A )  =  .0. 
/\  ( A  .+  v )  =  .0.  ) ) )  ->  w  =  v )
3433ex 115 . . 3  |-  ( (
ph  /\  ( w  e.  B  /\  v  e.  B ) )  -> 
( ( ( ( w  .+  A )  =  .0.  /\  ( A  .+  w )  =  .0.  )  /\  (
( v  .+  A
)  =  .0.  /\  ( A  .+  v )  =  .0.  ) )  ->  w  =  v ) )
3534ralrimivva 2579 . 2  |-  ( ph  ->  A. w  e.  B  A. v  e.  B  ( ( ( ( w  .+  A )  =  .0.  /\  ( A  .+  w )  =  .0.  )  /\  (
( v  .+  A
)  =  .0.  /\  ( A  .+  v )  =  .0.  ) )  ->  w  =  v ) )
36 oveq1 5929 . . . . 5  |-  ( w  =  v  ->  (
w  .+  A )  =  ( v  .+  A ) )
3736eqeq1d 2205 . . . 4  |-  ( w  =  v  ->  (
( w  .+  A
)  =  .0.  <->  ( v  .+  A )  =  .0.  ) )
38 oveq2 5930 . . . . 5  |-  ( w  =  v  ->  ( A  .+  w )  =  ( A  .+  v
) )
3938eqeq1d 2205 . . . 4  |-  ( w  =  v  ->  (
( A  .+  w
)  =  .0.  <->  ( A  .+  v )  =  .0.  ) )
4037, 39anbi12d 473 . . 3  |-  ( w  =  v  ->  (
( ( w  .+  A )  =  .0. 
/\  ( A  .+  w )  =  .0.  )  <->  ( ( v 
.+  A )  =  .0.  /\  ( A 
.+  v )  =  .0.  ) ) )
4140rmo4 2957 . 2  |-  ( E* w  e.  B  ( ( w  .+  A
)  =  .0.  /\  ( A  .+  w )  =  .0.  )  <->  A. w  e.  B  A. v  e.  B  ( (
( ( w  .+  A )  =  .0. 
/\  ( A  .+  w )  =  .0.  )  /\  ( ( v  .+  A )  =  .0.  /\  ( A  .+  v )  =  .0.  ) )  ->  w  =  v )
)
4235, 41sylibr 134 1  |-  ( ph  ->  E* w  e.  B  ( ( w  .+  A )  =  .0. 
/\  ( A  .+  w )  =  .0.  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475   E*wrmo 2478   ` cfv 5258  (class class class)co 5922   Basecbs 12678   +g cplusg 12755   0gc0g 12927   Mndcmnd 13057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-riota 5877  df-ov 5925  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058
This theorem is referenced by:  rinvmod  13439
  Copyright terms: Public domain W3C validator