| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mndinvmod | Unicode version | ||
| Description: Uniqueness of an inverse element in a monoid, if it exists. (Contributed by AV, 20-Jan-2024.) |
| Ref | Expression |
|---|---|
| mndinvmod.b |
|
| mndinvmod.0 |
|
| mndinvmod.p |
|
| mndinvmod.m |
|
| mndinvmod.a |
|
| Ref | Expression |
|---|---|
| mndinvmod |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndinvmod.m |
. . . . . . . 8
| |
| 2 | simpl 109 |
. . . . . . . 8
| |
| 3 | mndinvmod.b |
. . . . . . . . 9
| |
| 4 | mndinvmod.p |
. . . . . . . . 9
| |
| 5 | mndinvmod.0 |
. . . . . . . . 9
| |
| 6 | 3, 4, 5 | mndrid 13077 |
. . . . . . . 8
|
| 7 | 1, 2, 6 | syl2an 289 |
. . . . . . 7
|
| 8 | 7 | eqcomd 2202 |
. . . . . 6
|
| 9 | 8 | adantr 276 |
. . . . 5
|
| 10 | oveq2 5930 |
. . . . . . . . 9
| |
| 11 | 10 | eqcoms 2199 |
. . . . . . . 8
|
| 12 | 11 | adantl 277 |
. . . . . . 7
|
| 13 | 12 | adantl 277 |
. . . . . 6
|
| 14 | 13 | adantl 277 |
. . . . 5
|
| 15 | 1 | adantr 276 |
. . . . . . . 8
|
| 16 | 2 | adantl 277 |
. . . . . . . 8
|
| 17 | mndinvmod.a |
. . . . . . . . 9
| |
| 18 | 17 | adantr 276 |
. . . . . . . 8
|
| 19 | simpr 110 |
. . . . . . . . 9
| |
| 20 | 19 | adantl 277 |
. . . . . . . 8
|
| 21 | 3, 4 | mndass 13065 |
. . . . . . . . 9
|
| 22 | 21 | eqcomd 2202 |
. . . . . . . 8
|
| 23 | 15, 16, 18, 20, 22 | syl13anc 1251 |
. . . . . . 7
|
| 24 | 23 | adantr 276 |
. . . . . 6
|
| 25 | oveq1 5929 |
. . . . . . . . 9
| |
| 26 | 25 | adantr 276 |
. . . . . . . 8
|
| 27 | 26 | adantr 276 |
. . . . . . 7
|
| 28 | 27 | adantl 277 |
. . . . . 6
|
| 29 | 3, 4, 5 | mndlid 13076 |
. . . . . . . 8
|
| 30 | 1, 19, 29 | syl2an 289 |
. . . . . . 7
|
| 31 | 30 | adantr 276 |
. . . . . 6
|
| 32 | 24, 28, 31 | 3eqtrd 2233 |
. . . . 5
|
| 33 | 9, 14, 32 | 3eqtrd 2233 |
. . . 4
|
| 34 | 33 | ex 115 |
. . 3
|
| 35 | 34 | ralrimivva 2579 |
. 2
|
| 36 | oveq1 5929 |
. . . . 5
| |
| 37 | 36 | eqeq1d 2205 |
. . . 4
|
| 38 | oveq2 5930 |
. . . . 5
| |
| 39 | 38 | eqeq1d 2205 |
. . . 4
|
| 40 | 37, 39 | anbi12d 473 |
. . 3
|
| 41 | 40 | rmo4 2957 |
. 2
|
| 42 | 35, 41 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-riota 5877 df-ov 5925 df-inn 8991 df-2 9049 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 |
| This theorem is referenced by: rinvmod 13439 |
| Copyright terms: Public domain | W3C validator |