ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpge0d Unicode version

Theorem rpge0d 9699
Description: A positive real is greater than or equal to zero. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
rpred.1  |-  ( ph  ->  A  e.  RR+ )
Assertion
Ref Expression
rpge0d  |-  ( ph  ->  0  <_  A )

Proof of Theorem rpge0d
StepHypRef Expression
1 rpred.1 . 2  |-  ( ph  ->  A  e.  RR+ )
2 rpge0 9665 . 2  |-  ( A  e.  RR+  ->  0  <_  A )
31, 2syl 14 1  |-  ( ph  ->  0  <_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2148   class class class wbr 4003   0cc0 7810    <_ cle 7992   RR+crp 9652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1re 7904  ax-addrcl 7907  ax-rnegex 7919  ax-pre-ltirr 7922  ax-pre-lttrn 7924
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4004  df-opab 4065  df-xp 4632  df-cnv 4634  df-pnf 7993  df-mnf 7994  df-xr 7995  df-ltxr 7996  df-le 7997  df-rp 9653
This theorem is referenced by:  rprege0d  9703  resqrexlemnm  11026  bdtrilem  11246  isumrpcl  11501  expcnvap0  11509  absgtap  11517  cvgratnnlemrate  11537  cvgratz  11539  4sqlem7  12381  ivthinclemlopn  14084  ivthinclemuopn  14086  limcimolemlt  14103  rpcxpsqrt  14312  rpabscxpbnd  14329  trilpolemclim  14754  trilpolemisumle  14756  trilpolemeq1  14758  trilpolemlt1  14759  nconstwlpolemgt0  14781
  Copyright terms: Public domain W3C validator