![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rrgeq0i | GIF version |
Description: Property of a left-regular element. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
Ref | Expression |
---|---|
rrgval.e | ⊢ 𝐸 = (RLReg‘𝑅) |
rrgval.b | ⊢ 𝐵 = (Base‘𝑅) |
rrgval.t | ⊢ · = (.r‘𝑅) |
rrgval.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
rrgeq0i | ⊢ ((𝑋 ∈ 𝐸 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) = 0 → 𝑌 = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrgval.e | . . . 4 ⊢ 𝐸 = (RLReg‘𝑅) | |
2 | rrgval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
3 | rrgval.t | . . . 4 ⊢ · = (.r‘𝑅) | |
4 | rrgval.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
5 | 1, 2, 3, 4 | isrrg 13795 | . . 3 ⊢ (𝑋 ∈ 𝐸 ↔ (𝑋 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑋 · 𝑦) = 0 → 𝑦 = 0 ))) |
6 | 5 | simprbi 275 | . 2 ⊢ (𝑋 ∈ 𝐸 → ∀𝑦 ∈ 𝐵 ((𝑋 · 𝑦) = 0 → 𝑦 = 0 )) |
7 | oveq2 5930 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑋 · 𝑦) = (𝑋 · 𝑌)) | |
8 | 7 | eqeq1d 2205 | . . . 4 ⊢ (𝑦 = 𝑌 → ((𝑋 · 𝑦) = 0 ↔ (𝑋 · 𝑌) = 0 )) |
9 | eqeq1 2203 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑦 = 0 ↔ 𝑌 = 0 )) | |
10 | 8, 9 | imbi12d 234 | . . 3 ⊢ (𝑦 = 𝑌 → (((𝑋 · 𝑦) = 0 → 𝑦 = 0 ) ↔ ((𝑋 · 𝑌) = 0 → 𝑌 = 0 ))) |
11 | 10 | rspcv 2864 | . 2 ⊢ (𝑌 ∈ 𝐵 → (∀𝑦 ∈ 𝐵 ((𝑋 · 𝑦) = 0 → 𝑦 = 0 ) → ((𝑋 · 𝑌) = 0 → 𝑌 = 0 ))) |
12 | 6, 11 | mpan9 281 | 1 ⊢ ((𝑋 ∈ 𝐸 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) = 0 → 𝑌 = 0 )) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ‘cfv 5258 (class class class)co 5922 Basecbs 12654 .rcmulr 12732 0gc0g 12903 RLRegcrlreg 13787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7968 ax-resscn 7969 ax-1re 7971 ax-addrcl 7974 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-ov 5925 df-inn 8988 df-ndx 12657 df-slot 12658 df-base 12660 df-rlreg 13790 |
This theorem is referenced by: rrgeq0 13797 znrrg 14192 |
Copyright terms: Public domain | W3C validator |