ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  usgrstrrepeen Unicode version

Theorem usgrstrrepeen 15994
Description: Replacing (or adding) the edges (between elements of the base set) of an extensible structure results in a simple graph. Instead of requiring  ( ph  ->  G Struct  X ), it would be sufficient to require  ( ph  ->  Fun  ( G  \  { (/)
} ) ) and  ( ph  ->  G  e.  _V ). (Contributed by AV, 13-Nov-2021.) (Proof shortened by AV, 16-Nov-2021.)
Hypotheses
Ref Expression
usgrstrrepe.v  |-  V  =  ( Base `  G
)
usgrstrrepe.i  |-  I  =  (.ef `  ndx )
usgrstrrepe.s  |-  ( ph  ->  G Struct  X )
usgrstrrepe.b  |-  ( ph  ->  ( Base `  ndx )  e.  dom  G )
usgrstrrepe.w  |-  ( ph  ->  E  e.  W )
usgrstrrepeen.e  |-  ( ph  ->  E : dom  E -1-1-> { x  e.  ~P V  |  x  ~~  2o }
)
Assertion
Ref Expression
usgrstrrepeen  |-  ( ph  ->  ( G sSet  <. I ,  E >. )  e. USGraph )
Distinct variable groups:    x, G    x, E    x, I    x, V    ph, x
Allowed substitution hints:    W( x)    X( x)

Proof of Theorem usgrstrrepeen
StepHypRef Expression
1 usgrstrrepeen.e . . . 4  |-  ( ph  ->  E : dom  E -1-1-> { x  e.  ~P V  |  x  ~~  2o }
)
2 usgrstrrepe.i . . . . . . . . 9  |-  I  =  (.ef `  ndx )
3 usgrstrrepe.s . . . . . . . . 9  |-  ( ph  ->  G Struct  X )
4 usgrstrrepe.b . . . . . . . . 9  |-  ( ph  ->  ( Base `  ndx )  e.  dom  G )
5 usgrstrrepe.w . . . . . . . . 9  |-  ( ph  ->  E  e.  W )
62, 3, 4, 5setsvtx 15817 . . . . . . . 8  |-  ( ph  ->  (Vtx `  ( G sSet  <.
I ,  E >. ) )  =  ( Base `  G ) )
7 usgrstrrepe.v . . . . . . . 8  |-  V  =  ( Base `  G
)
86, 7eqtr4di 2260 . . . . . . 7  |-  ( ph  ->  (Vtx `  ( G sSet  <.
I ,  E >. ) )  =  V )
98pweqd 3634 . . . . . 6  |-  ( ph  ->  ~P (Vtx `  ( G sSet  <. I ,  E >. ) )  =  ~P V )
109rabeqdv 2773 . . . . 5  |-  ( ph  ->  { x  e.  ~P (Vtx `  ( G sSet  <. I ,  E >. )
)  |  x  ~~  2o }  =  { x  e.  ~P V  |  x 
~~  2o } )
11 f1eq3 5504 . . . . 5  |-  ( { x  e.  ~P (Vtx `  ( G sSet  <. I ,  E >. ) )  |  x  ~~  2o }  =  { x  e.  ~P V  |  x  ~~  2o }  ->  ( E : dom  E -1-1-> { x  e.  ~P (Vtx `  ( G sSet  <. I ,  E >. ) )  |  x 
~~  2o }  <->  E : dom  E -1-1-> { x  e.  ~P V  |  x  ~~  2o } ) )
1210, 11syl 14 . . . 4  |-  ( ph  ->  ( E : dom  E
-1-1-> { x  e.  ~P (Vtx `  ( G sSet  <. I ,  E >. )
)  |  x  ~~  2o }  <->  E : dom  E -1-1-> { x  e.  ~P V  |  x  ~~  2o }
) )
131, 12mpbird 167 . . 3  |-  ( ph  ->  E : dom  E -1-1-> { x  e.  ~P (Vtx `  ( G sSet  <. I ,  E >. ) )  |  x  ~~  2o }
)
142, 3, 4, 5setsiedg 15818 . . . 4  |-  ( ph  ->  (iEdg `  ( G sSet  <.
I ,  E >. ) )  =  E )
1514dmeqd 4902 . . . 4  |-  ( ph  ->  dom  (iEdg `  ( G sSet  <. I ,  E >. ) )  =  dom  E )
16 eqidd 2210 . . . 4  |-  ( ph  ->  { x  e.  ~P (Vtx `  ( G sSet  <. I ,  E >. )
)  |  x  ~~  2o }  =  { x  e.  ~P (Vtx `  ( G sSet  <. I ,  E >. ) )  |  x 
~~  2o } )
1714, 15, 16f1eq123d 5540 . . 3  |-  ( ph  ->  ( (iEdg `  ( G sSet  <. I ,  E >. ) ) : dom  (iEdg `  ( G sSet  <. I ,  E >. )
) -1-1-> { x  e.  ~P (Vtx `  ( G sSet  <. I ,  E >. )
)  |  x  ~~  2o }  <->  E : dom  E -1-1-> { x  e.  ~P (Vtx `  ( G sSet  <. I ,  E >. ) )  |  x  ~~  2o }
) )
1813, 17mpbird 167 . 2  |-  ( ph  ->  (iEdg `  ( G sSet  <.
I ,  E >. ) ) : dom  (iEdg `  ( G sSet  <. I ,  E >. ) ) -1-1-> {
x  e.  ~P (Vtx `  ( G sSet  <. I ,  E >. ) )  |  x  ~~  2o }
)
19 structex 13010 . . . . 5  |-  ( G Struct  X  ->  G  e.  _V )
203, 19syl 14 . . . 4  |-  ( ph  ->  G  e.  _V )
21 edgfndxnn 15774 . . . . . 6  |-  (.ef `  ndx )  e.  NN
222, 21eqeltri 2282 . . . . 5  |-  I  e.  NN
2322a1i 9 . . . 4  |-  ( ph  ->  I  e.  NN )
24 setsex 13030 . . . 4  |-  ( ( G  e.  _V  /\  I  e.  NN  /\  E  e.  W )  ->  ( G sSet  <. I ,  E >. )  e.  _V )
2520, 23, 5, 24syl3anc 1252 . . 3  |-  ( ph  ->  ( G sSet  <. I ,  E >. )  e.  _V )
26 eqid 2209 . . . 4  |-  (Vtx `  ( G sSet  <. I ,  E >. ) )  =  (Vtx `  ( G sSet  <.
I ,  E >. ) )
27 eqid 2209 . . . 4  |-  (iEdg `  ( G sSet  <. I ,  E >. ) )  =  (iEdg `  ( G sSet  <.
I ,  E >. ) )
2826, 27isusgren 15921 . . 3  |-  ( ( G sSet  <. I ,  E >. )  e.  _V  ->  ( ( G sSet  <. I ,  E >. )  e. USGraph  <->  (iEdg `  ( G sSet  <. I ,  E >. ) ) : dom  (iEdg `  ( G sSet  <. I ,  E >. )
) -1-1-> { x  e.  ~P (Vtx `  ( G sSet  <. I ,  E >. )
)  |  x  ~~  2o } ) )
2925, 28syl 14 . 2  |-  ( ph  ->  ( ( G sSet  <. I ,  E >. )  e. USGraph  <-> 
(iEdg `  ( G sSet  <.
I ,  E >. ) ) : dom  (iEdg `  ( G sSet  <. I ,  E >. ) ) -1-1-> {
x  e.  ~P (Vtx `  ( G sSet  <. I ,  E >. ) )  |  x  ~~  2o }
) )
3018, 29mpbird 167 1  |-  ( ph  ->  ( G sSet  <. I ,  E >. )  e. USGraph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1375    e. wcel 2180   {crab 2492   _Vcvv 2779   ~Pcpw 3629   <.cop 3649   class class class wbr 4062   dom cdm 4696   -1-1->wf1 5291   ` cfv 5294  (class class class)co 5974   2oc2o 6526    ~~ cen 6855   NNcn 9078   Struct cstr 12994   ndxcnx 12995   sSet csts 12996   Basecbs 12998  .efcedgf 15770  Vtxcvtx 15778  iEdgciedg 15779  USGraphcusgr 15917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-ltadd 8083  ax-pre-mulgt0 8084
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-iord 4434  df-on 4436  df-suc 4439  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-1o 6532  df-2o 6533  df-en 6858  df-dom 6859  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-z 9415  df-dec 9547  df-struct 13000  df-ndx 13001  df-slot 13002  df-base 13004  df-sets 13005  df-edgf 15771  df-vtx 15780  df-iedg 15781  df-usgren 15919
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator