ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  usgrstrrepeen Unicode version

Theorem usgrstrrepeen 16037
Description: Replacing (or adding) the edges (between elements of the base set) of an extensible structure results in a simple graph. Instead of requiring  ( ph  ->  G Struct  X ), it would be sufficient to require  ( ph  ->  Fun  ( G  \  { (/)
} ) ) and  ( ph  ->  G  e.  _V ). (Contributed by AV, 13-Nov-2021.) (Proof shortened by AV, 16-Nov-2021.)
Hypotheses
Ref Expression
usgrstrrepe.v  |-  V  =  ( Base `  G
)
usgrstrrepe.i  |-  I  =  (.ef `  ndx )
usgrstrrepe.s  |-  ( ph  ->  G Struct  X )
usgrstrrepe.b  |-  ( ph  ->  ( Base `  ndx )  e.  dom  G )
usgrstrrepe.w  |-  ( ph  ->  E  e.  W )
usgrstrrepeen.e  |-  ( ph  ->  E : dom  E -1-1-> { x  e.  ~P V  |  x  ~~  2o }
)
Assertion
Ref Expression
usgrstrrepeen  |-  ( ph  ->  ( G sSet  <. I ,  E >. )  e. USGraph )
Distinct variable groups:    x, G    x, E    x, I    x, V    ph, x
Allowed substitution hints:    W( x)    X( x)

Proof of Theorem usgrstrrepeen
StepHypRef Expression
1 usgrstrrepeen.e . . . 4  |-  ( ph  ->  E : dom  E -1-1-> { x  e.  ~P V  |  x  ~~  2o }
)
2 usgrstrrepe.i . . . . . . . . 9  |-  I  =  (.ef `  ndx )
3 usgrstrrepe.s . . . . . . . . 9  |-  ( ph  ->  G Struct  X )
4 usgrstrrepe.b . . . . . . . . 9  |-  ( ph  ->  ( Base `  ndx )  e.  dom  G )
5 usgrstrrepe.w . . . . . . . . 9  |-  ( ph  ->  E  e.  W )
62, 3, 4, 5setsvtx 15860 . . . . . . . 8  |-  ( ph  ->  (Vtx `  ( G sSet  <.
I ,  E >. ) )  =  ( Base `  G ) )
7 usgrstrrepe.v . . . . . . . 8  |-  V  =  ( Base `  G
)
86, 7eqtr4di 2280 . . . . . . 7  |-  ( ph  ->  (Vtx `  ( G sSet  <.
I ,  E >. ) )  =  V )
98pweqd 3654 . . . . . 6  |-  ( ph  ->  ~P (Vtx `  ( G sSet  <. I ,  E >. ) )  =  ~P V )
109rabeqdv 2793 . . . . 5  |-  ( ph  ->  { x  e.  ~P (Vtx `  ( G sSet  <. I ,  E >. )
)  |  x  ~~  2o }  =  { x  e.  ~P V  |  x 
~~  2o } )
11 f1eq3 5530 . . . . 5  |-  ( { x  e.  ~P (Vtx `  ( G sSet  <. I ,  E >. ) )  |  x  ~~  2o }  =  { x  e.  ~P V  |  x  ~~  2o }  ->  ( E : dom  E -1-1-> { x  e.  ~P (Vtx `  ( G sSet  <. I ,  E >. ) )  |  x 
~~  2o }  <->  E : dom  E -1-1-> { x  e.  ~P V  |  x  ~~  2o } ) )
1210, 11syl 14 . . . 4  |-  ( ph  ->  ( E : dom  E
-1-1-> { x  e.  ~P (Vtx `  ( G sSet  <. I ,  E >. )
)  |  x  ~~  2o }  <->  E : dom  E -1-1-> { x  e.  ~P V  |  x  ~~  2o }
) )
131, 12mpbird 167 . . 3  |-  ( ph  ->  E : dom  E -1-1-> { x  e.  ~P (Vtx `  ( G sSet  <. I ,  E >. ) )  |  x  ~~  2o }
)
142, 3, 4, 5setsiedg 15861 . . . 4  |-  ( ph  ->  (iEdg `  ( G sSet  <.
I ,  E >. ) )  =  E )
1514dmeqd 4925 . . . 4  |-  ( ph  ->  dom  (iEdg `  ( G sSet  <. I ,  E >. ) )  =  dom  E )
16 eqidd 2230 . . . 4  |-  ( ph  ->  { x  e.  ~P (Vtx `  ( G sSet  <. I ,  E >. )
)  |  x  ~~  2o }  =  { x  e.  ~P (Vtx `  ( G sSet  <. I ,  E >. ) )  |  x 
~~  2o } )
1714, 15, 16f1eq123d 5566 . . 3  |-  ( ph  ->  ( (iEdg `  ( G sSet  <. I ,  E >. ) ) : dom  (iEdg `  ( G sSet  <. I ,  E >. )
) -1-1-> { x  e.  ~P (Vtx `  ( G sSet  <. I ,  E >. )
)  |  x  ~~  2o }  <->  E : dom  E -1-1-> { x  e.  ~P (Vtx `  ( G sSet  <. I ,  E >. ) )  |  x  ~~  2o }
) )
1813, 17mpbird 167 . 2  |-  ( ph  ->  (iEdg `  ( G sSet  <.
I ,  E >. ) ) : dom  (iEdg `  ( G sSet  <. I ,  E >. ) ) -1-1-> {
x  e.  ~P (Vtx `  ( G sSet  <. I ,  E >. ) )  |  x  ~~  2o }
)
19 structex 13052 . . . . 5  |-  ( G Struct  X  ->  G  e.  _V )
203, 19syl 14 . . . 4  |-  ( ph  ->  G  e.  _V )
21 edgfndxnn 15817 . . . . . 6  |-  (.ef `  ndx )  e.  NN
222, 21eqeltri 2302 . . . . 5  |-  I  e.  NN
2322a1i 9 . . . 4  |-  ( ph  ->  I  e.  NN )
24 setsex 13072 . . . 4  |-  ( ( G  e.  _V  /\  I  e.  NN  /\  E  e.  W )  ->  ( G sSet  <. I ,  E >. )  e.  _V )
2520, 23, 5, 24syl3anc 1271 . . 3  |-  ( ph  ->  ( G sSet  <. I ,  E >. )  e.  _V )
26 eqid 2229 . . . 4  |-  (Vtx `  ( G sSet  <. I ,  E >. ) )  =  (Vtx `  ( G sSet  <.
I ,  E >. ) )
27 eqid 2229 . . . 4  |-  (iEdg `  ( G sSet  <. I ,  E >. ) )  =  (iEdg `  ( G sSet  <.
I ,  E >. ) )
2826, 27isusgren 15964 . . 3  |-  ( ( G sSet  <. I ,  E >. )  e.  _V  ->  ( ( G sSet  <. I ,  E >. )  e. USGraph  <->  (iEdg `  ( G sSet  <. I ,  E >. ) ) : dom  (iEdg `  ( G sSet  <. I ,  E >. )
) -1-1-> { x  e.  ~P (Vtx `  ( G sSet  <. I ,  E >. )
)  |  x  ~~  2o } ) )
2925, 28syl 14 . 2  |-  ( ph  ->  ( ( G sSet  <. I ,  E >. )  e. USGraph  <-> 
(iEdg `  ( G sSet  <.
I ,  E >. ) ) : dom  (iEdg `  ( G sSet  <. I ,  E >. ) ) -1-1-> {
x  e.  ~P (Vtx `  ( G sSet  <. I ,  E >. ) )  |  x  ~~  2o }
) )
3018, 29mpbird 167 1  |-  ( ph  ->  ( G sSet  <. I ,  E >. )  e. USGraph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395    e. wcel 2200   {crab 2512   _Vcvv 2799   ~Pcpw 3649   <.cop 3669   class class class wbr 4083   dom cdm 4719   -1-1->wf1 5315   ` cfv 5318  (class class class)co 6007   2oc2o 6562    ~~ cen 6893   NNcn 9118   Struct cstr 13036   ndxcnx 13037   sSet csts 13038   Basecbs 13040  .efcedgf 15813  Vtxcvtx 15821  iEdgciedg 15822  USGraphcusgr 15960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-ltadd 8123  ax-pre-mulgt0 8124
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-1o 6568  df-2o 6569  df-en 6896  df-dom 6897  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-9 9184  df-n0 9378  df-z 9455  df-dec 9587  df-struct 13042  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-edgf 15814  df-vtx 15823  df-iedg 15824  df-usgren 15962
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator