ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  basvtxval2dom Unicode version

Theorem basvtxval2dom 15708
Description: The set of vertices of a graph represented as an extensible structure with the set of vertices as base set. (Contributed by AV, 14-Oct-2020.) (Revised by AV, 12-Nov-2021.)
Hypotheses
Ref Expression
basvtxval.s  |-  ( ph  ->  G Struct  X )
basvtxval2dom.d  |-  ( ph  ->  2o  ~<_  dom  G )
basvtxval.v  |-  ( ph  ->  V  e.  Y )
basvtxval.b  |-  ( ph  -> 
<. ( Base `  ndx ) ,  V >.  e.  G )
Assertion
Ref Expression
basvtxval2dom  |-  ( ph  ->  (Vtx `  G )  =  V )

Proof of Theorem basvtxval2dom
StepHypRef Expression
1 basvtxval.s . . . 4  |-  ( ph  ->  G Struct  X )
2 structex 12919 . . . 4  |-  ( G Struct  X  ->  G  e.  _V )
31, 2syl 14 . . 3  |-  ( ph  ->  G  e.  _V )
4 structn0fun 12920 . . . 4  |-  ( G Struct  X  ->  Fun  ( G  \  { (/) } ) )
51, 4syl 14 . . 3  |-  ( ph  ->  Fun  ( G  \  { (/) } ) )
6 basvtxval2dom.d . . 3  |-  ( ph  ->  2o  ~<_  dom  G )
7 funvtxdm2domval 15703 . . 3  |-  ( ( G  e.  _V  /\  Fun  ( G  \  { (/)
} )  /\  2o  ~<_  dom  G )  ->  (Vtx `  G )  =  (
Base `  G )
)
83, 5, 6, 7syl3anc 1250 . 2  |-  ( ph  ->  (Vtx `  G )  =  ( Base `  G
) )
9 basvtxval.v . . 3  |-  ( ph  ->  V  e.  Y )
10 basvtxval.b . . 3  |-  ( ph  -> 
<. ( Base `  ndx ) ,  V >.  e.  G )
111, 9, 10opelstrbas 13022 . 2  |-  ( ph  ->  V  =  ( Base `  G ) )
128, 11eqtr4d 2242 1  |-  ( ph  ->  (Vtx `  G )  =  V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2177   _Vcvv 2773    \ cdif 3167   (/)c0 3464   {csn 3638   <.cop 3641   class class class wbr 4051   dom cdm 4683   Fun wfun 5274   ` cfv 5280   2oc2o 6509    ~<_ cdom 6839   Struct cstr 12903   ndxcnx 12904   Basecbs 12907  Vtxcvtx 15686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-cnex 8036  ax-resscn 8037  ax-1re 8039  ax-addrcl 8042
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-suc 4426  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-fv 5288  df-1st 6239  df-1o 6515  df-2o 6516  df-dom 6842  df-inn 9057  df-struct 12909  df-ndx 12910  df-slot 12911  df-base 12913  df-vtx 15688
This theorem is referenced by:  structvtxval  15713  structgrssvtx  15716
  Copyright terms: Public domain W3C validator