ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subaddeqd Unicode version

Theorem subaddeqd 8155
Description: Transfer two terms of a subtraction to an addition in an equality. (Contributed by Thierry Arnoux, 2-Feb-2020.)
Hypotheses
Ref Expression
subaddeqd.a  |-  ( ph  ->  A  e.  CC )
subaddeqd.b  |-  ( ph  ->  B  e.  CC )
subaddeqd.c  |-  ( ph  ->  C  e.  CC )
subaddeqd.d  |-  ( ph  ->  D  e.  CC )
subaddeqd.1  |-  ( ph  ->  ( A  +  B
)  =  ( C  +  D ) )
Assertion
Ref Expression
subaddeqd  |-  ( ph  ->  ( A  -  D
)  =  ( C  -  B ) )

Proof of Theorem subaddeqd
StepHypRef Expression
1 subaddeqd.1 . . . 4  |-  ( ph  ->  ( A  +  B
)  =  ( C  +  D ) )
21oveq1d 5797 . . 3  |-  ( ph  ->  ( ( A  +  B )  -  ( D  +  B )
)  =  ( ( C  +  D )  -  ( D  +  B ) ) )
3 subaddeqd.c . . . . 5  |-  ( ph  ->  C  e.  CC )
4 subaddeqd.d . . . . 5  |-  ( ph  ->  D  e.  CC )
53, 4addcomd 7937 . . . 4  |-  ( ph  ->  ( C  +  D
)  =  ( D  +  C ) )
65oveq1d 5797 . . 3  |-  ( ph  ->  ( ( C  +  D )  -  ( D  +  B )
)  =  ( ( D  +  C )  -  ( D  +  B ) ) )
72, 6eqtrd 2173 . 2  |-  ( ph  ->  ( ( A  +  B )  -  ( D  +  B )
)  =  ( ( D  +  C )  -  ( D  +  B ) ) )
8 subaddeqd.a . . 3  |-  ( ph  ->  A  e.  CC )
9 subaddeqd.b . . 3  |-  ( ph  ->  B  e.  CC )
108, 4, 9pnpcan2d 8135 . 2  |-  ( ph  ->  ( ( A  +  B )  -  ( D  +  B )
)  =  ( A  -  D ) )
114, 3, 9pnpcand 8134 . 2  |-  ( ph  ->  ( ( D  +  C )  -  ( D  +  B )
)  =  ( C  -  B ) )
127, 10, 113eqtr3d 2181 1  |-  ( ph  ->  ( A  -  D
)  =  ( C  -  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1332    e. wcel 1481  (class class class)co 5782   CCcc 7642    + caddc 7647    - cmin 7957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-setind 4460  ax-resscn 7736  ax-1cn 7737  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-sub 7959
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator