| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subaddeqd | Unicode version | ||
| Description: Transfer two terms of a subtraction to an addition in an equality. (Contributed by Thierry Arnoux, 2-Feb-2020.) |
| Ref | Expression |
|---|---|
| subaddeqd.a |
|
| subaddeqd.b |
|
| subaddeqd.c |
|
| subaddeqd.d |
|
| subaddeqd.1 |
|
| Ref | Expression |
|---|---|
| subaddeqd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subaddeqd.1 |
. . . 4
| |
| 2 | 1 | oveq1d 5937 |
. . 3
|
| 3 | subaddeqd.c |
. . . . 5
| |
| 4 | subaddeqd.d |
. . . . 5
| |
| 5 | 3, 4 | addcomd 8177 |
. . . 4
|
| 6 | 5 | oveq1d 5937 |
. . 3
|
| 7 | 2, 6 | eqtrd 2229 |
. 2
|
| 8 | subaddeqd.a |
. . 3
| |
| 9 | subaddeqd.b |
. . 3
| |
| 10 | 8, 4, 9 | pnpcan2d 8375 |
. 2
|
| 11 | 4, 3, 9 | pnpcand 8374 |
. 2
|
| 12 | 7, 10, 11 | 3eqtr3d 2237 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-setind 4573 ax-resscn 7971 ax-1cn 7972 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-sub 8199 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |