ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subaddeqd Unicode version

Theorem subaddeqd 8476
Description: Transfer two terms of a subtraction to an addition in an equality. (Contributed by Thierry Arnoux, 2-Feb-2020.)
Hypotheses
Ref Expression
subaddeqd.a  |-  ( ph  ->  A  e.  CC )
subaddeqd.b  |-  ( ph  ->  B  e.  CC )
subaddeqd.c  |-  ( ph  ->  C  e.  CC )
subaddeqd.d  |-  ( ph  ->  D  e.  CC )
subaddeqd.1  |-  ( ph  ->  ( A  +  B
)  =  ( C  +  D ) )
Assertion
Ref Expression
subaddeqd  |-  ( ph  ->  ( A  -  D
)  =  ( C  -  B ) )

Proof of Theorem subaddeqd
StepHypRef Expression
1 subaddeqd.1 . . . 4  |-  ( ph  ->  ( A  +  B
)  =  ( C  +  D ) )
21oveq1d 5982 . . 3  |-  ( ph  ->  ( ( A  +  B )  -  ( D  +  B )
)  =  ( ( C  +  D )  -  ( D  +  B ) ) )
3 subaddeqd.c . . . . 5  |-  ( ph  ->  C  e.  CC )
4 subaddeqd.d . . . . 5  |-  ( ph  ->  D  e.  CC )
53, 4addcomd 8258 . . . 4  |-  ( ph  ->  ( C  +  D
)  =  ( D  +  C ) )
65oveq1d 5982 . . 3  |-  ( ph  ->  ( ( C  +  D )  -  ( D  +  B )
)  =  ( ( D  +  C )  -  ( D  +  B ) ) )
72, 6eqtrd 2240 . 2  |-  ( ph  ->  ( ( A  +  B )  -  ( D  +  B )
)  =  ( ( D  +  C )  -  ( D  +  B ) ) )
8 subaddeqd.a . . 3  |-  ( ph  ->  A  e.  CC )
9 subaddeqd.b . . 3  |-  ( ph  ->  B  e.  CC )
108, 4, 9pnpcan2d 8456 . 2  |-  ( ph  ->  ( ( A  +  B )  -  ( D  +  B )
)  =  ( A  -  D ) )
114, 3, 9pnpcand 8455 . 2  |-  ( ph  ->  ( ( D  +  C )  -  ( D  +  B )
)  =  ( C  -  B ) )
127, 10, 113eqtr3d 2248 1  |-  ( ph  ->  ( A  -  D
)  =  ( C  -  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178  (class class class)co 5967   CCcc 7958    + caddc 7963    - cmin 8278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-setind 4603  ax-resscn 8052  ax-1cn 8053  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-sub 8280
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator