ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subaddeqd Unicode version

Theorem subaddeqd 8441
Description: Transfer two terms of a subtraction to an addition in an equality. (Contributed by Thierry Arnoux, 2-Feb-2020.)
Hypotheses
Ref Expression
subaddeqd.a  |-  ( ph  ->  A  e.  CC )
subaddeqd.b  |-  ( ph  ->  B  e.  CC )
subaddeqd.c  |-  ( ph  ->  C  e.  CC )
subaddeqd.d  |-  ( ph  ->  D  e.  CC )
subaddeqd.1  |-  ( ph  ->  ( A  +  B
)  =  ( C  +  D ) )
Assertion
Ref Expression
subaddeqd  |-  ( ph  ->  ( A  -  D
)  =  ( C  -  B ) )

Proof of Theorem subaddeqd
StepHypRef Expression
1 subaddeqd.1 . . . 4  |-  ( ph  ->  ( A  +  B
)  =  ( C  +  D ) )
21oveq1d 5959 . . 3  |-  ( ph  ->  ( ( A  +  B )  -  ( D  +  B )
)  =  ( ( C  +  D )  -  ( D  +  B ) ) )
3 subaddeqd.c . . . . 5  |-  ( ph  ->  C  e.  CC )
4 subaddeqd.d . . . . 5  |-  ( ph  ->  D  e.  CC )
53, 4addcomd 8223 . . . 4  |-  ( ph  ->  ( C  +  D
)  =  ( D  +  C ) )
65oveq1d 5959 . . 3  |-  ( ph  ->  ( ( C  +  D )  -  ( D  +  B )
)  =  ( ( D  +  C )  -  ( D  +  B ) ) )
72, 6eqtrd 2238 . 2  |-  ( ph  ->  ( ( A  +  B )  -  ( D  +  B )
)  =  ( ( D  +  C )  -  ( D  +  B ) ) )
8 subaddeqd.a . . 3  |-  ( ph  ->  A  e.  CC )
9 subaddeqd.b . . 3  |-  ( ph  ->  B  e.  CC )
108, 4, 9pnpcan2d 8421 . 2  |-  ( ph  ->  ( ( A  +  B )  -  ( D  +  B )
)  =  ( A  -  D ) )
114, 3, 9pnpcand 8420 . 2  |-  ( ph  ->  ( ( D  +  C )  -  ( D  +  B )
)  =  ( C  -  B ) )
127, 10, 113eqtr3d 2246 1  |-  ( ph  ->  ( A  -  D
)  =  ( C  -  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176  (class class class)co 5944   CCcc 7923    + caddc 7928    - cmin 8243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-setind 4585  ax-resscn 8017  ax-1cn 8018  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-sub 8245
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator