| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subaddeqd | GIF version | ||
| Description: Transfer two terms of a subtraction to an addition in an equality. (Contributed by Thierry Arnoux, 2-Feb-2020.) |
| Ref | Expression |
|---|---|
| subaddeqd.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| subaddeqd.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| subaddeqd.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| subaddeqd.d | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
| subaddeqd.1 | ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐶 + 𝐷)) |
| Ref | Expression |
|---|---|
| subaddeqd | ⊢ (𝜑 → (𝐴 − 𝐷) = (𝐶 − 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subaddeqd.1 | . . . 4 ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐶 + 𝐷)) | |
| 2 | 1 | oveq1d 5971 | . . 3 ⊢ (𝜑 → ((𝐴 + 𝐵) − (𝐷 + 𝐵)) = ((𝐶 + 𝐷) − (𝐷 + 𝐵))) |
| 3 | subaddeqd.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 4 | subaddeqd.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
| 5 | 3, 4 | addcomd 8238 | . . . 4 ⊢ (𝜑 → (𝐶 + 𝐷) = (𝐷 + 𝐶)) |
| 6 | 5 | oveq1d 5971 | . . 3 ⊢ (𝜑 → ((𝐶 + 𝐷) − (𝐷 + 𝐵)) = ((𝐷 + 𝐶) − (𝐷 + 𝐵))) |
| 7 | 2, 6 | eqtrd 2239 | . 2 ⊢ (𝜑 → ((𝐴 + 𝐵) − (𝐷 + 𝐵)) = ((𝐷 + 𝐶) − (𝐷 + 𝐵))) |
| 8 | subaddeqd.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 9 | subaddeqd.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 10 | 8, 4, 9 | pnpcan2d 8436 | . 2 ⊢ (𝜑 → ((𝐴 + 𝐵) − (𝐷 + 𝐵)) = (𝐴 − 𝐷)) |
| 11 | 4, 3, 9 | pnpcand 8435 | . 2 ⊢ (𝜑 → ((𝐷 + 𝐶) − (𝐷 + 𝐵)) = (𝐶 − 𝐵)) |
| 12 | 7, 10, 11 | 3eqtr3d 2247 | 1 ⊢ (𝜑 → (𝐴 − 𝐷) = (𝐶 − 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 (class class class)co 5956 ℂcc 7938 + caddc 7943 − cmin 8258 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-setind 4592 ax-resscn 8032 ax-1cn 8033 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-addcom 8040 ax-addass 8042 ax-distr 8044 ax-i2m1 8045 ax-0id 8048 ax-rnegex 8049 ax-cnre 8051 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-br 4051 df-opab 4113 df-id 4347 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-iota 5240 df-fun 5281 df-fv 5287 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-sub 8260 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |