Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > subaddeqd | GIF version |
Description: Transfer two terms of a subtraction to an addition in an equality. (Contributed by Thierry Arnoux, 2-Feb-2020.) |
Ref | Expression |
---|---|
subaddeqd.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
subaddeqd.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
subaddeqd.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
subaddeqd.d | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
subaddeqd.1 | ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐶 + 𝐷)) |
Ref | Expression |
---|---|
subaddeqd | ⊢ (𝜑 → (𝐴 − 𝐷) = (𝐶 − 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subaddeqd.1 | . . . 4 ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐶 + 𝐷)) | |
2 | 1 | oveq1d 5868 | . . 3 ⊢ (𝜑 → ((𝐴 + 𝐵) − (𝐷 + 𝐵)) = ((𝐶 + 𝐷) − (𝐷 + 𝐵))) |
3 | subaddeqd.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | subaddeqd.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
5 | 3, 4 | addcomd 8070 | . . . 4 ⊢ (𝜑 → (𝐶 + 𝐷) = (𝐷 + 𝐶)) |
6 | 5 | oveq1d 5868 | . . 3 ⊢ (𝜑 → ((𝐶 + 𝐷) − (𝐷 + 𝐵)) = ((𝐷 + 𝐶) − (𝐷 + 𝐵))) |
7 | 2, 6 | eqtrd 2203 | . 2 ⊢ (𝜑 → ((𝐴 + 𝐵) − (𝐷 + 𝐵)) = ((𝐷 + 𝐶) − (𝐷 + 𝐵))) |
8 | subaddeqd.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
9 | subaddeqd.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
10 | 8, 4, 9 | pnpcan2d 8268 | . 2 ⊢ (𝜑 → ((𝐴 + 𝐵) − (𝐷 + 𝐵)) = (𝐴 − 𝐷)) |
11 | 4, 3, 9 | pnpcand 8267 | . 2 ⊢ (𝜑 → ((𝐷 + 𝐶) − (𝐷 + 𝐵)) = (𝐶 − 𝐵)) |
12 | 7, 10, 11 | 3eqtr3d 2211 | 1 ⊢ (𝜑 → (𝐴 − 𝐷) = (𝐶 − 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 (class class class)co 5853 ℂcc 7772 + caddc 7777 − cmin 8090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-setind 4521 ax-resscn 7866 ax-1cn 7867 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-sub 8092 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |