ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subaddeqd GIF version

Theorem subaddeqd 8395
Description: Transfer two terms of a subtraction to an addition in an equality. (Contributed by Thierry Arnoux, 2-Feb-2020.)
Hypotheses
Ref Expression
subaddeqd.a (𝜑𝐴 ∈ ℂ)
subaddeqd.b (𝜑𝐵 ∈ ℂ)
subaddeqd.c (𝜑𝐶 ∈ ℂ)
subaddeqd.d (𝜑𝐷 ∈ ℂ)
subaddeqd.1 (𝜑 → (𝐴 + 𝐵) = (𝐶 + 𝐷))
Assertion
Ref Expression
subaddeqd (𝜑 → (𝐴𝐷) = (𝐶𝐵))

Proof of Theorem subaddeqd
StepHypRef Expression
1 subaddeqd.1 . . . 4 (𝜑 → (𝐴 + 𝐵) = (𝐶 + 𝐷))
21oveq1d 5937 . . 3 (𝜑 → ((𝐴 + 𝐵) − (𝐷 + 𝐵)) = ((𝐶 + 𝐷) − (𝐷 + 𝐵)))
3 subaddeqd.c . . . . 5 (𝜑𝐶 ∈ ℂ)
4 subaddeqd.d . . . . 5 (𝜑𝐷 ∈ ℂ)
53, 4addcomd 8177 . . . 4 (𝜑 → (𝐶 + 𝐷) = (𝐷 + 𝐶))
65oveq1d 5937 . . 3 (𝜑 → ((𝐶 + 𝐷) − (𝐷 + 𝐵)) = ((𝐷 + 𝐶) − (𝐷 + 𝐵)))
72, 6eqtrd 2229 . 2 (𝜑 → ((𝐴 + 𝐵) − (𝐷 + 𝐵)) = ((𝐷 + 𝐶) − (𝐷 + 𝐵)))
8 subaddeqd.a . . 3 (𝜑𝐴 ∈ ℂ)
9 subaddeqd.b . . 3 (𝜑𝐵 ∈ ℂ)
108, 4, 9pnpcan2d 8375 . 2 (𝜑 → ((𝐴 + 𝐵) − (𝐷 + 𝐵)) = (𝐴𝐷))
114, 3, 9pnpcand 8374 . 2 (𝜑 → ((𝐷 + 𝐶) − (𝐷 + 𝐵)) = (𝐶𝐵))
127, 10, 113eqtr3d 2237 1 (𝜑 → (𝐴𝐷) = (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  (class class class)co 5922  cc 7877   + caddc 7882  cmin 8197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-setind 4573  ax-resscn 7971  ax-1cn 7972  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-sub 8199
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator