Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > subaddeqd | GIF version |
Description: Transfer two terms of a subtraction to an addition in an equality. (Contributed by Thierry Arnoux, 2-Feb-2020.) |
Ref | Expression |
---|---|
subaddeqd.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
subaddeqd.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
subaddeqd.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
subaddeqd.d | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
subaddeqd.1 | ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐶 + 𝐷)) |
Ref | Expression |
---|---|
subaddeqd | ⊢ (𝜑 → (𝐴 − 𝐷) = (𝐶 − 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subaddeqd.1 | . . . 4 ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐶 + 𝐷)) | |
2 | 1 | oveq1d 5836 | . . 3 ⊢ (𝜑 → ((𝐴 + 𝐵) − (𝐷 + 𝐵)) = ((𝐶 + 𝐷) − (𝐷 + 𝐵))) |
3 | subaddeqd.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | subaddeqd.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
5 | 3, 4 | addcomd 8020 | . . . 4 ⊢ (𝜑 → (𝐶 + 𝐷) = (𝐷 + 𝐶)) |
6 | 5 | oveq1d 5836 | . . 3 ⊢ (𝜑 → ((𝐶 + 𝐷) − (𝐷 + 𝐵)) = ((𝐷 + 𝐶) − (𝐷 + 𝐵))) |
7 | 2, 6 | eqtrd 2190 | . 2 ⊢ (𝜑 → ((𝐴 + 𝐵) − (𝐷 + 𝐵)) = ((𝐷 + 𝐶) − (𝐷 + 𝐵))) |
8 | subaddeqd.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
9 | subaddeqd.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
10 | 8, 4, 9 | pnpcan2d 8218 | . 2 ⊢ (𝜑 → ((𝐴 + 𝐵) − (𝐷 + 𝐵)) = (𝐴 − 𝐷)) |
11 | 4, 3, 9 | pnpcand 8217 | . 2 ⊢ (𝜑 → ((𝐷 + 𝐶) − (𝐷 + 𝐵)) = (𝐶 − 𝐵)) |
12 | 7, 10, 11 | 3eqtr3d 2198 | 1 ⊢ (𝜑 → (𝐴 − 𝐷) = (𝐶 − 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1335 ∈ wcel 2128 (class class class)co 5821 ℂcc 7724 + caddc 7729 − cmin 8040 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-setind 4495 ax-resscn 7818 ax-1cn 7819 ax-icn 7821 ax-addcl 7822 ax-addrcl 7823 ax-mulcl 7824 ax-addcom 7826 ax-addass 7828 ax-distr 7830 ax-i2m1 7831 ax-0id 7834 ax-rnegex 7835 ax-cnre 7837 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-id 4253 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-iota 5134 df-fun 5171 df-fv 5177 df-riota 5777 df-ov 5824 df-oprab 5825 df-mpo 5826 df-sub 8042 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |