ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subaddeqd GIF version

Theorem subaddeqd 8238
Description: Transfer two terms of a subtraction to an addition in an equality. (Contributed by Thierry Arnoux, 2-Feb-2020.)
Hypotheses
Ref Expression
subaddeqd.a (𝜑𝐴 ∈ ℂ)
subaddeqd.b (𝜑𝐵 ∈ ℂ)
subaddeqd.c (𝜑𝐶 ∈ ℂ)
subaddeqd.d (𝜑𝐷 ∈ ℂ)
subaddeqd.1 (𝜑 → (𝐴 + 𝐵) = (𝐶 + 𝐷))
Assertion
Ref Expression
subaddeqd (𝜑 → (𝐴𝐷) = (𝐶𝐵))

Proof of Theorem subaddeqd
StepHypRef Expression
1 subaddeqd.1 . . . 4 (𝜑 → (𝐴 + 𝐵) = (𝐶 + 𝐷))
21oveq1d 5836 . . 3 (𝜑 → ((𝐴 + 𝐵) − (𝐷 + 𝐵)) = ((𝐶 + 𝐷) − (𝐷 + 𝐵)))
3 subaddeqd.c . . . . 5 (𝜑𝐶 ∈ ℂ)
4 subaddeqd.d . . . . 5 (𝜑𝐷 ∈ ℂ)
53, 4addcomd 8020 . . . 4 (𝜑 → (𝐶 + 𝐷) = (𝐷 + 𝐶))
65oveq1d 5836 . . 3 (𝜑 → ((𝐶 + 𝐷) − (𝐷 + 𝐵)) = ((𝐷 + 𝐶) − (𝐷 + 𝐵)))
72, 6eqtrd 2190 . 2 (𝜑 → ((𝐴 + 𝐵) − (𝐷 + 𝐵)) = ((𝐷 + 𝐶) − (𝐷 + 𝐵)))
8 subaddeqd.a . . 3 (𝜑𝐴 ∈ ℂ)
9 subaddeqd.b . . 3 (𝜑𝐵 ∈ ℂ)
108, 4, 9pnpcan2d 8218 . 2 (𝜑 → ((𝐴 + 𝐵) − (𝐷 + 𝐵)) = (𝐴𝐷))
114, 3, 9pnpcand 8217 . 2 (𝜑 → ((𝐷 + 𝐶) − (𝐷 + 𝐵)) = (𝐶𝐵))
127, 10, 113eqtr3d 2198 1 (𝜑 → (𝐴𝐷) = (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1335  wcel 2128  (class class class)co 5821  cc 7724   + caddc 7729  cmin 8040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-setind 4495  ax-resscn 7818  ax-1cn 7819  ax-icn 7821  ax-addcl 7822  ax-addrcl 7823  ax-mulcl 7824  ax-addcom 7826  ax-addass 7828  ax-distr 7830  ax-i2m1 7831  ax-0id 7834  ax-rnegex 7835  ax-cnre 7837
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-id 4253  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-iota 5134  df-fun 5171  df-fv 5177  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-sub 8042
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator