ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subeq0bd Unicode version

Theorem subeq0bd 8277
Description: If two complex numbers are equal, their difference is zero. Consequence of subeq0ad 8219. Converse of subeq0d 8217. Contrapositive of subne0ad 8220. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
subeq0bd.1  |-  ( ph  ->  A  e.  CC )
subeq0bd.2  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
subeq0bd  |-  ( ph  ->  ( A  -  B
)  =  0 )

Proof of Theorem subeq0bd
StepHypRef Expression
1 subeq0bd.2 . 2  |-  ( ph  ->  A  =  B )
2 subeq0bd.1 . . 3  |-  ( ph  ->  A  e.  CC )
31, 2eqeltrrd 2244 . . 3  |-  ( ph  ->  B  e.  CC )
42, 3subeq0ad 8219 . 2  |-  ( ph  ->  ( ( A  -  B )  =  0  <-> 
A  =  B ) )
51, 4mpbird 166 1  |-  ( ph  ->  ( A  -  B
)  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136  (class class class)co 5842   CCcc 7751   0cc0 7753    - cmin 8069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-setind 4514  ax-resscn 7845  ax-1cn 7846  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-sub 8071
This theorem is referenced by:  cnplimclemle  13277
  Copyright terms: Public domain W3C validator