ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnplimclemle Unicode version

Theorem cnplimclemle 13277
Description: Lemma for cnplimccntop 13279. Satisfying the epsilon condition for continuity. (Contributed by Mario Carneiro and Jim Kingdon, 17-Nov-2023.)
Hypotheses
Ref Expression
cnplimccntop.k  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
cnplimc.j  |-  J  =  ( Kt  A )
cnplimclemr.a  |-  ( ph  ->  A  C_  CC )
cnplimclemr.f  |-  ( ph  ->  F : A --> CC )
cnplimclemr.b  |-  ( ph  ->  B  e.  A )
cnplimclemr.l  |-  ( ph  ->  ( F `  B
)  e.  ( F lim
CC  B ) )
cnplimclemle.e  |-  ( ph  ->  E  e.  RR+ )
cnplimclemle.d  |-  ( ph  ->  D  e.  RR+ )
cnplimclemle.z  |-  ( ph  ->  Z  e.  A )
cnplimclemle.im  |-  ( (
ph  /\  Z #  B  /\  ( abs `  ( Z  -  B )
)  <  D )  ->  ( abs `  (
( F `  Z
)  -  ( F `
 B ) ) )  <  ( E  /  2 ) )
cnplimclemle.zd  |-  ( ph  ->  ( abs `  ( Z  -  B )
)  <  D )
Assertion
Ref Expression
cnplimclemle  |-  ( ph  ->  ( abs `  (
( F `  Z
)  -  ( F `
 B ) ) )  <  E )

Proof of Theorem cnplimclemle
StepHypRef Expression
1 simpr 109 . . 3  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )
2 cnplimclemr.f . . . . . . . 8  |-  ( ph  ->  F : A --> CC )
3 cnplimclemle.z . . . . . . . 8  |-  ( ph  ->  Z  e.  A )
42, 3ffvelrnd 5621 . . . . . . 7  |-  ( ph  ->  ( F `  Z
)  e.  CC )
5 cnplimclemr.b . . . . . . . 8  |-  ( ph  ->  B  e.  A )
62, 5ffvelrnd 5621 . . . . . . 7  |-  ( ph  ->  ( F `  B
)  e.  CC )
74, 6subcld 8209 . . . . . 6  |-  ( ph  ->  ( ( F `  Z )  -  ( F `  B )
)  e.  CC )
87abscld 11123 . . . . 5  |-  ( ph  ->  ( abs `  (
( F `  Z
)  -  ( F `
 B ) ) )  e.  RR )
98adantr 274 . . . 4  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  ( abs `  ( ( F `
 Z )  -  ( F `  B ) ) )  e.  RR )
10 cnplimclemle.e . . . . . . 7  |-  ( ph  ->  E  e.  RR+ )
1110rphalfcld 9645 . . . . . 6  |-  ( ph  ->  ( E  /  2
)  e.  RR+ )
1211rpred 9632 . . . . 5  |-  ( ph  ->  ( E  /  2
)  e.  RR )
1312adantr 274 . . . 4  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  ( E  /  2 )  e.  RR )
144adantr 274 . . . . . . 7  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  ( F `  Z )  e.  CC )
151adantr 274 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  /\  Z #  B )  ->  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )
16 simpll 519 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  /\  Z #  B )  ->  ph )
1716, 8syl 14 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  /\  Z #  B )  ->  ( abs `  ( ( F `
 Z )  -  ( F `  B ) ) )  e.  RR )
1816, 12syl 14 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  /\  Z #  B )  ->  ( E  /  2 )  e.  RR )
19 simpr 109 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  /\  Z #  B )  ->  Z #  B )
20 cnplimclemle.zd . . . . . . . . . . . . 13  |-  ( ph  ->  ( abs `  ( Z  -  B )
)  <  D )
2116, 20syl 14 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  /\  Z #  B )  ->  ( abs `  ( Z  -  B ) )  < 
D )
22 cnplimclemle.im . . . . . . . . . . . 12  |-  ( (
ph  /\  Z #  B  /\  ( abs `  ( Z  -  B )
)  <  D )  ->  ( abs `  (
( F `  Z
)  -  ( F `
 B ) ) )  <  ( E  /  2 ) )
2316, 19, 21, 22syl3anc 1228 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  /\  Z #  B )  ->  ( abs `  ( ( F `
 Z )  -  ( F `  B ) ) )  <  ( E  /  2 ) )
2417, 18, 23ltnsymd 8018 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  /\  Z #  B )  ->  -.  ( E  /  2
)  <  ( abs `  ( ( F `  Z )  -  ( F `  B )
) ) )
2515, 24pm2.65da 651 . . . . . . . . 9  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  -.  Z #  B )
26 cnplimclemr.a . . . . . . . . . . 11  |-  ( ph  ->  A  C_  CC )
2726, 3sseldd 3143 . . . . . . . . . 10  |-  ( ph  ->  Z  e.  CC )
2826, 5sseldd 3143 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  CC )
2928adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  B  e.  CC )
30 apti 8520 . . . . . . . . . 10  |-  ( ( Z  e.  CC  /\  B  e.  CC )  ->  ( Z  =  B  <->  -.  Z #  B )
)
3127, 29, 30syl2an2r 585 . . . . . . . . 9  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  ( Z  =  B  <->  -.  Z #  B ) )
3225, 31mpbird 166 . . . . . . . 8  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  Z  =  B )
3332fveq2d 5490 . . . . . . 7  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  ( F `  Z )  =  ( F `  B ) )
3414, 33subeq0bd 8277 . . . . . 6  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  (
( F `  Z
)  -  ( F `
 B ) )  =  0 )
3534abs00bd 11008 . . . . 5  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  ( abs `  ( ( F `
 Z )  -  ( F `  B ) ) )  =  0 )
3611adantr 274 . . . . . 6  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  ( E  /  2 )  e.  RR+ )
3736rpgt0d 9635 . . . . 5  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  0  <  ( E  /  2
) )
3835, 37eqbrtrd 4004 . . . 4  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  ( abs `  ( ( F `
 Z )  -  ( F `  B ) ) )  <  ( E  /  2 ) )
399, 13, 38ltnsymd 8018 . . 3  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  -.  ( E  /  2
)  <  ( abs `  ( ( F `  Z )  -  ( F `  B )
) ) )
401, 39pm2.21dd 610 . 2  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  ( abs `  ( ( F `
 Z )  -  ( F `  B ) ) )  <  E
)
41 simpr 109 . 2  |-  ( (
ph  /\  ( abs `  ( ( F `  Z )  -  ( F `  B )
) )  <  E
)  ->  ( abs `  ( ( F `  Z )  -  ( F `  B )
) )  <  E
)
42 rphalflt 9619 . . . 4  |-  ( E  e.  RR+  ->  ( E  /  2 )  < 
E )
4310, 42syl 14 . . 3  |-  ( ph  ->  ( E  /  2
)  <  E )
4410rpred 9632 . . . 4  |-  ( ph  ->  E  e.  RR )
45 axltwlin 7966 . . . 4  |-  ( ( ( E  /  2
)  e.  RR  /\  E  e.  RR  /\  ( abs `  ( ( F `
 Z )  -  ( F `  B ) ) )  e.  RR )  ->  ( ( E  /  2 )  < 
E  ->  ( ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) )  \/  ( abs `  ( ( F `  Z )  -  ( F `  B )
) )  <  E
) ) )
4612, 44, 8, 45syl3anc 1228 . . 3  |-  ( ph  ->  ( ( E  / 
2 )  <  E  ->  ( ( E  / 
2 )  <  ( abs `  ( ( F `
 Z )  -  ( F `  B ) ) )  \/  ( abs `  ( ( F `
 Z )  -  ( F `  B ) ) )  <  E
) ) )
4743, 46mpd 13 . 2  |-  ( ph  ->  ( ( E  / 
2 )  <  ( abs `  ( ( F `
 Z )  -  ( F `  B ) ) )  \/  ( abs `  ( ( F `
 Z )  -  ( F `  B ) ) )  <  E
) )
4840, 41, 47mpjaodan 788 1  |-  ( ph  ->  ( abs `  (
( F `  Z
)  -  ( F `
 B ) ) )  <  E )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    /\ w3a 968    = wceq 1343    e. wcel 2136    C_ wss 3116   class class class wbr 3982    o. ccom 4608   -->wf 5184   ` cfv 5188  (class class class)co 5842   CCcc 7751   RRcr 7752   0cc0 7753    < clt 7933    - cmin 8069   # cap 8479    / cdiv 8568   2c2 8908   RR+crp 9589   abscabs 10939   ↾t crest 12556   MetOpencmopn 12625   lim CC climc 13263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-rp 9590  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941
This theorem is referenced by:  cnplimclemr  13278
  Copyright terms: Public domain W3C validator