ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnplimclemle Unicode version

Theorem cnplimclemle 12984
Description: Lemma for cnplimccntop 12986. Satisfying the epsilon condition for continuity. (Contributed by Mario Carneiro and Jim Kingdon, 17-Nov-2023.)
Hypotheses
Ref Expression
cnplimccntop.k  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
cnplimc.j  |-  J  =  ( Kt  A )
cnplimclemr.a  |-  ( ph  ->  A  C_  CC )
cnplimclemr.f  |-  ( ph  ->  F : A --> CC )
cnplimclemr.b  |-  ( ph  ->  B  e.  A )
cnplimclemr.l  |-  ( ph  ->  ( F `  B
)  e.  ( F lim
CC  B ) )
cnplimclemle.e  |-  ( ph  ->  E  e.  RR+ )
cnplimclemle.d  |-  ( ph  ->  D  e.  RR+ )
cnplimclemle.z  |-  ( ph  ->  Z  e.  A )
cnplimclemle.im  |-  ( (
ph  /\  Z #  B  /\  ( abs `  ( Z  -  B )
)  <  D )  ->  ( abs `  (
( F `  Z
)  -  ( F `
 B ) ) )  <  ( E  /  2 ) )
cnplimclemle.zd  |-  ( ph  ->  ( abs `  ( Z  -  B )
)  <  D )
Assertion
Ref Expression
cnplimclemle  |-  ( ph  ->  ( abs `  (
( F `  Z
)  -  ( F `
 B ) ) )  <  E )

Proof of Theorem cnplimclemle
StepHypRef Expression
1 simpr 109 . . 3  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )
2 cnplimclemr.f . . . . . . . 8  |-  ( ph  ->  F : A --> CC )
3 cnplimclemle.z . . . . . . . 8  |-  ( ph  ->  Z  e.  A )
42, 3ffvelrnd 5596 . . . . . . 7  |-  ( ph  ->  ( F `  Z
)  e.  CC )
5 cnplimclemr.b . . . . . . . 8  |-  ( ph  ->  B  e.  A )
62, 5ffvelrnd 5596 . . . . . . 7  |-  ( ph  ->  ( F `  B
)  e.  CC )
74, 6subcld 8165 . . . . . 6  |-  ( ph  ->  ( ( F `  Z )  -  ( F `  B )
)  e.  CC )
87abscld 11058 . . . . 5  |-  ( ph  ->  ( abs `  (
( F `  Z
)  -  ( F `
 B ) ) )  e.  RR )
98adantr 274 . . . 4  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  ( abs `  ( ( F `
 Z )  -  ( F `  B ) ) )  e.  RR )
10 cnplimclemle.e . . . . . . 7  |-  ( ph  ->  E  e.  RR+ )
1110rphalfcld 9594 . . . . . 6  |-  ( ph  ->  ( E  /  2
)  e.  RR+ )
1211rpred 9581 . . . . 5  |-  ( ph  ->  ( E  /  2
)  e.  RR )
1312adantr 274 . . . 4  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  ( E  /  2 )  e.  RR )
144adantr 274 . . . . . . 7  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  ( F `  Z )  e.  CC )
151adantr 274 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  /\  Z #  B )  ->  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )
16 simpll 519 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  /\  Z #  B )  ->  ph )
1716, 8syl 14 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  /\  Z #  B )  ->  ( abs `  ( ( F `
 Z )  -  ( F `  B ) ) )  e.  RR )
1816, 12syl 14 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  /\  Z #  B )  ->  ( E  /  2 )  e.  RR )
19 simpr 109 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  /\  Z #  B )  ->  Z #  B )
20 cnplimclemle.zd . . . . . . . . . . . . 13  |-  ( ph  ->  ( abs `  ( Z  -  B )
)  <  D )
2116, 20syl 14 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  /\  Z #  B )  ->  ( abs `  ( Z  -  B ) )  < 
D )
22 cnplimclemle.im . . . . . . . . . . . 12  |-  ( (
ph  /\  Z #  B  /\  ( abs `  ( Z  -  B )
)  <  D )  ->  ( abs `  (
( F `  Z
)  -  ( F `
 B ) ) )  <  ( E  /  2 ) )
2316, 19, 21, 22syl3anc 1217 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  /\  Z #  B )  ->  ( abs `  ( ( F `
 Z )  -  ( F `  B ) ) )  <  ( E  /  2 ) )
2417, 18, 23ltnsymd 7974 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  /\  Z #  B )  ->  -.  ( E  /  2
)  <  ( abs `  ( ( F `  Z )  -  ( F `  B )
) ) )
2515, 24pm2.65da 651 . . . . . . . . 9  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  -.  Z #  B )
26 cnplimclemr.a . . . . . . . . . . 11  |-  ( ph  ->  A  C_  CC )
2726, 3sseldd 3125 . . . . . . . . . 10  |-  ( ph  ->  Z  e.  CC )
2826, 5sseldd 3125 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  CC )
2928adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  B  e.  CC )
30 apti 8476 . . . . . . . . . 10  |-  ( ( Z  e.  CC  /\  B  e.  CC )  ->  ( Z  =  B  <->  -.  Z #  B )
)
3127, 29, 30syl2an2r 585 . . . . . . . . 9  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  ( Z  =  B  <->  -.  Z #  B ) )
3225, 31mpbird 166 . . . . . . . 8  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  Z  =  B )
3332fveq2d 5465 . . . . . . 7  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  ( F `  Z )  =  ( F `  B ) )
3414, 33subeq0bd 8233 . . . . . 6  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  (
( F `  Z
)  -  ( F `
 B ) )  =  0 )
3534abs00bd 10943 . . . . 5  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  ( abs `  ( ( F `
 Z )  -  ( F `  B ) ) )  =  0 )
3611adantr 274 . . . . . 6  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  ( E  /  2 )  e.  RR+ )
3736rpgt0d 9584 . . . . 5  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  0  <  ( E  /  2
) )
3835, 37eqbrtrd 3982 . . . 4  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  ( abs `  ( ( F `
 Z )  -  ( F `  B ) ) )  <  ( E  /  2 ) )
399, 13, 38ltnsymd 7974 . . 3  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  -.  ( E  /  2
)  <  ( abs `  ( ( F `  Z )  -  ( F `  B )
) ) )
401, 39pm2.21dd 610 . 2  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  ( abs `  ( ( F `
 Z )  -  ( F `  B ) ) )  <  E
)
41 simpr 109 . 2  |-  ( (
ph  /\  ( abs `  ( ( F `  Z )  -  ( F `  B )
) )  <  E
)  ->  ( abs `  ( ( F `  Z )  -  ( F `  B )
) )  <  E
)
42 rphalflt 9568 . . . 4  |-  ( E  e.  RR+  ->  ( E  /  2 )  < 
E )
4310, 42syl 14 . . 3  |-  ( ph  ->  ( E  /  2
)  <  E )
4410rpred 9581 . . . 4  |-  ( ph  ->  E  e.  RR )
45 axltwlin 7924 . . . 4  |-  ( ( ( E  /  2
)  e.  RR  /\  E  e.  RR  /\  ( abs `  ( ( F `
 Z )  -  ( F `  B ) ) )  e.  RR )  ->  ( ( E  /  2 )  < 
E  ->  ( ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) )  \/  ( abs `  ( ( F `  Z )  -  ( F `  B )
) )  <  E
) ) )
4612, 44, 8, 45syl3anc 1217 . . 3  |-  ( ph  ->  ( ( E  / 
2 )  <  E  ->  ( ( E  / 
2 )  <  ( abs `  ( ( F `
 Z )  -  ( F `  B ) ) )  \/  ( abs `  ( ( F `
 Z )  -  ( F `  B ) ) )  <  E
) ) )
4743, 46mpd 13 . 2  |-  ( ph  ->  ( ( E  / 
2 )  <  ( abs `  ( ( F `
 Z )  -  ( F `  B ) ) )  \/  ( abs `  ( ( F `
 Z )  -  ( F `  B ) ) )  <  E
) )
4840, 41, 47mpjaodan 788 1  |-  ( ph  ->  ( abs `  (
( F `  Z
)  -  ( F `
 B ) ) )  <  E )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    /\ w3a 963    = wceq 1332    e. wcel 2125    C_ wss 3098   class class class wbr 3961    o. ccom 4583   -->wf 5159   ` cfv 5163  (class class class)co 5814   CCcc 7709   RRcr 7710   0cc0 7711    < clt 7891    - cmin 8025   # cap 8435    / cdiv 8524   2c2 8863   RR+crp 9538   abscabs 10874   ↾t crest 12298   MetOpencmopn 12332   lim CC climc 12970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-mulrcl 7810  ax-addcom 7811  ax-mulcom 7812  ax-addass 7813  ax-mulass 7814  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-1rid 7818  ax-0id 7819  ax-rnegex 7820  ax-precex 7821  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-apti 7826  ax-pre-ltadd 7827  ax-pre-mulgt0 7828  ax-pre-mulext 7829  ax-arch 7830  ax-caucvg 7831
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rmo 2440  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-if 3502  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-id 4248  df-po 4251  df-iso 4252  df-iord 4321  df-on 4323  df-ilim 4324  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-recs 6242  df-frec 6328  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-reap 8429  df-ap 8436  df-div 8525  df-inn 8813  df-2 8871  df-3 8872  df-4 8873  df-n0 9070  df-z 9147  df-uz 9419  df-rp 9539  df-seqfrec 10323  df-exp 10397  df-cj 10719  df-re 10720  df-im 10721  df-rsqrt 10875  df-abs 10876
This theorem is referenced by:  cnplimclemr  12985
  Copyright terms: Public domain W3C validator