ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnplimclemle Unicode version

Theorem cnplimclemle 15255
Description: Lemma for cnplimccntop 15257. Satisfying the epsilon condition for continuity. (Contributed by Mario Carneiro and Jim Kingdon, 17-Nov-2023.)
Hypotheses
Ref Expression
cnplimccntop.k  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
cnplimc.j  |-  J  =  ( Kt  A )
cnplimclemr.a  |-  ( ph  ->  A  C_  CC )
cnplimclemr.f  |-  ( ph  ->  F : A --> CC )
cnplimclemr.b  |-  ( ph  ->  B  e.  A )
cnplimclemr.l  |-  ( ph  ->  ( F `  B
)  e.  ( F lim
CC  B ) )
cnplimclemle.e  |-  ( ph  ->  E  e.  RR+ )
cnplimclemle.d  |-  ( ph  ->  D  e.  RR+ )
cnplimclemle.z  |-  ( ph  ->  Z  e.  A )
cnplimclemle.im  |-  ( (
ph  /\  Z #  B  /\  ( abs `  ( Z  -  B )
)  <  D )  ->  ( abs `  (
( F `  Z
)  -  ( F `
 B ) ) )  <  ( E  /  2 ) )
cnplimclemle.zd  |-  ( ph  ->  ( abs `  ( Z  -  B )
)  <  D )
Assertion
Ref Expression
cnplimclemle  |-  ( ph  ->  ( abs `  (
( F `  Z
)  -  ( F `
 B ) ) )  <  E )

Proof of Theorem cnplimclemle
StepHypRef Expression
1 simpr 110 . . 3  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )
2 cnplimclemr.f . . . . . . . 8  |-  ( ph  ->  F : A --> CC )
3 cnplimclemle.z . . . . . . . 8  |-  ( ph  ->  Z  e.  A )
42, 3ffvelcdmd 5739 . . . . . . 7  |-  ( ph  ->  ( F `  Z
)  e.  CC )
5 cnplimclemr.b . . . . . . . 8  |-  ( ph  ->  B  e.  A )
62, 5ffvelcdmd 5739 . . . . . . 7  |-  ( ph  ->  ( F `  B
)  e.  CC )
74, 6subcld 8418 . . . . . 6  |-  ( ph  ->  ( ( F `  Z )  -  ( F `  B )
)  e.  CC )
87abscld 11607 . . . . 5  |-  ( ph  ->  ( abs `  (
( F `  Z
)  -  ( F `
 B ) ) )  e.  RR )
98adantr 276 . . . 4  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  ( abs `  ( ( F `
 Z )  -  ( F `  B ) ) )  e.  RR )
10 cnplimclemle.e . . . . . . 7  |-  ( ph  ->  E  e.  RR+ )
1110rphalfcld 9866 . . . . . 6  |-  ( ph  ->  ( E  /  2
)  e.  RR+ )
1211rpred 9853 . . . . 5  |-  ( ph  ->  ( E  /  2
)  e.  RR )
1312adantr 276 . . . 4  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  ( E  /  2 )  e.  RR )
144adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  ( F `  Z )  e.  CC )
151adantr 276 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  /\  Z #  B )  ->  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )
16 simpll 527 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  /\  Z #  B )  ->  ph )
1716, 8syl 14 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  /\  Z #  B )  ->  ( abs `  ( ( F `
 Z )  -  ( F `  B ) ) )  e.  RR )
1816, 12syl 14 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  /\  Z #  B )  ->  ( E  /  2 )  e.  RR )
19 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  /\  Z #  B )  ->  Z #  B )
20 cnplimclemle.zd . . . . . . . . . . . . 13  |-  ( ph  ->  ( abs `  ( Z  -  B )
)  <  D )
2116, 20syl 14 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  /\  Z #  B )  ->  ( abs `  ( Z  -  B ) )  < 
D )
22 cnplimclemle.im . . . . . . . . . . . 12  |-  ( (
ph  /\  Z #  B  /\  ( abs `  ( Z  -  B )
)  <  D )  ->  ( abs `  (
( F `  Z
)  -  ( F `
 B ) ) )  <  ( E  /  2 ) )
2316, 19, 21, 22syl3anc 1250 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  /\  Z #  B )  ->  ( abs `  ( ( F `
 Z )  -  ( F `  B ) ) )  <  ( E  /  2 ) )
2417, 18, 23ltnsymd 8227 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  /\  Z #  B )  ->  -.  ( E  /  2
)  <  ( abs `  ( ( F `  Z )  -  ( F `  B )
) ) )
2515, 24pm2.65da 663 . . . . . . . . 9  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  -.  Z #  B )
26 cnplimclemr.a . . . . . . . . . . 11  |-  ( ph  ->  A  C_  CC )
2726, 3sseldd 3202 . . . . . . . . . 10  |-  ( ph  ->  Z  e.  CC )
2826, 5sseldd 3202 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  CC )
2928adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  B  e.  CC )
30 apti 8730 . . . . . . . . . 10  |-  ( ( Z  e.  CC  /\  B  e.  CC )  ->  ( Z  =  B  <->  -.  Z #  B )
)
3127, 29, 30syl2an2r 595 . . . . . . . . 9  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  ( Z  =  B  <->  -.  Z #  B ) )
3225, 31mpbird 167 . . . . . . . 8  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  Z  =  B )
3332fveq2d 5603 . . . . . . 7  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  ( F `  Z )  =  ( F `  B ) )
3414, 33subeq0bd 8486 . . . . . 6  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  (
( F `  Z
)  -  ( F `
 B ) )  =  0 )
3534abs00bd 11492 . . . . 5  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  ( abs `  ( ( F `
 Z )  -  ( F `  B ) ) )  =  0 )
3611adantr 276 . . . . . 6  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  ( E  /  2 )  e.  RR+ )
3736rpgt0d 9856 . . . . 5  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  0  <  ( E  /  2
) )
3835, 37eqbrtrd 4081 . . . 4  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  ( abs `  ( ( F `
 Z )  -  ( F `  B ) ) )  <  ( E  /  2 ) )
399, 13, 38ltnsymd 8227 . . 3  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  -.  ( E  /  2
)  <  ( abs `  ( ( F `  Z )  -  ( F `  B )
) ) )
401, 39pm2.21dd 621 . 2  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  ( abs `  ( ( F `
 Z )  -  ( F `  B ) ) )  <  E
)
41 simpr 110 . 2  |-  ( (
ph  /\  ( abs `  ( ( F `  Z )  -  ( F `  B )
) )  <  E
)  ->  ( abs `  ( ( F `  Z )  -  ( F `  B )
) )  <  E
)
42 rphalflt 9840 . . . 4  |-  ( E  e.  RR+  ->  ( E  /  2 )  < 
E )
4310, 42syl 14 . . 3  |-  ( ph  ->  ( E  /  2
)  <  E )
4410rpred 9853 . . . 4  |-  ( ph  ->  E  e.  RR )
45 axltwlin 8175 . . . 4  |-  ( ( ( E  /  2
)  e.  RR  /\  E  e.  RR  /\  ( abs `  ( ( F `
 Z )  -  ( F `  B ) ) )  e.  RR )  ->  ( ( E  /  2 )  < 
E  ->  ( ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) )  \/  ( abs `  ( ( F `  Z )  -  ( F `  B )
) )  <  E
) ) )
4612, 44, 8, 45syl3anc 1250 . . 3  |-  ( ph  ->  ( ( E  / 
2 )  <  E  ->  ( ( E  / 
2 )  <  ( abs `  ( ( F `
 Z )  -  ( F `  B ) ) )  \/  ( abs `  ( ( F `
 Z )  -  ( F `  B ) ) )  <  E
) ) )
4743, 46mpd 13 . 2  |-  ( ph  ->  ( ( E  / 
2 )  <  ( abs `  ( ( F `
 Z )  -  ( F `  B ) ) )  \/  ( abs `  ( ( F `
 Z )  -  ( F `  B ) ) )  <  E
) )
4840, 41, 47mpjaodan 800 1  |-  ( ph  ->  ( abs `  (
( F `  Z
)  -  ( F `
 B ) ) )  <  E )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    /\ w3a 981    = wceq 1373    e. wcel 2178    C_ wss 3174   class class class wbr 4059    o. ccom 4697   -->wf 5286   ` cfv 5290  (class class class)co 5967   CCcc 7958   RRcr 7959   0cc0 7960    < clt 8142    - cmin 8278   # cap 8689    / cdiv 8780   2c2 9122   RR+crp 9810   abscabs 11423   ↾t crest 13186   MetOpencmopn 14418   lim CC climc 15241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-rp 9811  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425
This theorem is referenced by:  cnplimclemr  15256
  Copyright terms: Public domain W3C validator