ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnplimclemle Unicode version

Theorem cnplimclemle 15342
Description: Lemma for cnplimccntop 15344. Satisfying the epsilon condition for continuity. (Contributed by Mario Carneiro and Jim Kingdon, 17-Nov-2023.)
Hypotheses
Ref Expression
cnplimccntop.k  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
cnplimc.j  |-  J  =  ( Kt  A )
cnplimclemr.a  |-  ( ph  ->  A  C_  CC )
cnplimclemr.f  |-  ( ph  ->  F : A --> CC )
cnplimclemr.b  |-  ( ph  ->  B  e.  A )
cnplimclemr.l  |-  ( ph  ->  ( F `  B
)  e.  ( F lim
CC  B ) )
cnplimclemle.e  |-  ( ph  ->  E  e.  RR+ )
cnplimclemle.d  |-  ( ph  ->  D  e.  RR+ )
cnplimclemle.z  |-  ( ph  ->  Z  e.  A )
cnplimclemle.im  |-  ( (
ph  /\  Z #  B  /\  ( abs `  ( Z  -  B )
)  <  D )  ->  ( abs `  (
( F `  Z
)  -  ( F `
 B ) ) )  <  ( E  /  2 ) )
cnplimclemle.zd  |-  ( ph  ->  ( abs `  ( Z  -  B )
)  <  D )
Assertion
Ref Expression
cnplimclemle  |-  ( ph  ->  ( abs `  (
( F `  Z
)  -  ( F `
 B ) ) )  <  E )

Proof of Theorem cnplimclemle
StepHypRef Expression
1 simpr 110 . . 3  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )
2 cnplimclemr.f . . . . . . . 8  |-  ( ph  ->  F : A --> CC )
3 cnplimclemle.z . . . . . . . 8  |-  ( ph  ->  Z  e.  A )
42, 3ffvelcdmd 5771 . . . . . . 7  |-  ( ph  ->  ( F `  Z
)  e.  CC )
5 cnplimclemr.b . . . . . . . 8  |-  ( ph  ->  B  e.  A )
62, 5ffvelcdmd 5771 . . . . . . 7  |-  ( ph  ->  ( F `  B
)  e.  CC )
74, 6subcld 8457 . . . . . 6  |-  ( ph  ->  ( ( F `  Z )  -  ( F `  B )
)  e.  CC )
87abscld 11692 . . . . 5  |-  ( ph  ->  ( abs `  (
( F `  Z
)  -  ( F `
 B ) ) )  e.  RR )
98adantr 276 . . . 4  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  ( abs `  ( ( F `
 Z )  -  ( F `  B ) ) )  e.  RR )
10 cnplimclemle.e . . . . . . 7  |-  ( ph  ->  E  e.  RR+ )
1110rphalfcld 9905 . . . . . 6  |-  ( ph  ->  ( E  /  2
)  e.  RR+ )
1211rpred 9892 . . . . 5  |-  ( ph  ->  ( E  /  2
)  e.  RR )
1312adantr 276 . . . 4  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  ( E  /  2 )  e.  RR )
144adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  ( F `  Z )  e.  CC )
151adantr 276 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  /\  Z #  B )  ->  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )
16 simpll 527 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  /\  Z #  B )  ->  ph )
1716, 8syl 14 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  /\  Z #  B )  ->  ( abs `  ( ( F `
 Z )  -  ( F `  B ) ) )  e.  RR )
1816, 12syl 14 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  /\  Z #  B )  ->  ( E  /  2 )  e.  RR )
19 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  /\  Z #  B )  ->  Z #  B )
20 cnplimclemle.zd . . . . . . . . . . . . 13  |-  ( ph  ->  ( abs `  ( Z  -  B )
)  <  D )
2116, 20syl 14 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  /\  Z #  B )  ->  ( abs `  ( Z  -  B ) )  < 
D )
22 cnplimclemle.im . . . . . . . . . . . 12  |-  ( (
ph  /\  Z #  B  /\  ( abs `  ( Z  -  B )
)  <  D )  ->  ( abs `  (
( F `  Z
)  -  ( F `
 B ) ) )  <  ( E  /  2 ) )
2316, 19, 21, 22syl3anc 1271 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  /\  Z #  B )  ->  ( abs `  ( ( F `
 Z )  -  ( F `  B ) ) )  <  ( E  /  2 ) )
2417, 18, 23ltnsymd 8266 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  /\  Z #  B )  ->  -.  ( E  /  2
)  <  ( abs `  ( ( F `  Z )  -  ( F `  B )
) ) )
2515, 24pm2.65da 665 . . . . . . . . 9  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  -.  Z #  B )
26 cnplimclemr.a . . . . . . . . . . 11  |-  ( ph  ->  A  C_  CC )
2726, 3sseldd 3225 . . . . . . . . . 10  |-  ( ph  ->  Z  e.  CC )
2826, 5sseldd 3225 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  CC )
2928adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  B  e.  CC )
30 apti 8769 . . . . . . . . . 10  |-  ( ( Z  e.  CC  /\  B  e.  CC )  ->  ( Z  =  B  <->  -.  Z #  B )
)
3127, 29, 30syl2an2r 597 . . . . . . . . 9  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  ( Z  =  B  <->  -.  Z #  B ) )
3225, 31mpbird 167 . . . . . . . 8  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  Z  =  B )
3332fveq2d 5631 . . . . . . 7  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  ( F `  Z )  =  ( F `  B ) )
3414, 33subeq0bd 8525 . . . . . 6  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  (
( F `  Z
)  -  ( F `
 B ) )  =  0 )
3534abs00bd 11577 . . . . 5  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  ( abs `  ( ( F `
 Z )  -  ( F `  B ) ) )  =  0 )
3611adantr 276 . . . . . 6  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  ( E  /  2 )  e.  RR+ )
3736rpgt0d 9895 . . . . 5  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  0  <  ( E  /  2
) )
3835, 37eqbrtrd 4105 . . . 4  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  ( abs `  ( ( F `
 Z )  -  ( F `  B ) ) )  <  ( E  /  2 ) )
399, 13, 38ltnsymd 8266 . . 3  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  -.  ( E  /  2
)  <  ( abs `  ( ( F `  Z )  -  ( F `  B )
) ) )
401, 39pm2.21dd 623 . 2  |-  ( (
ph  /\  ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) ) )  ->  ( abs `  ( ( F `
 Z )  -  ( F `  B ) ) )  <  E
)
41 simpr 110 . 2  |-  ( (
ph  /\  ( abs `  ( ( F `  Z )  -  ( F `  B )
) )  <  E
)  ->  ( abs `  ( ( F `  Z )  -  ( F `  B )
) )  <  E
)
42 rphalflt 9879 . . . 4  |-  ( E  e.  RR+  ->  ( E  /  2 )  < 
E )
4310, 42syl 14 . . 3  |-  ( ph  ->  ( E  /  2
)  <  E )
4410rpred 9892 . . . 4  |-  ( ph  ->  E  e.  RR )
45 axltwlin 8214 . . . 4  |-  ( ( ( E  /  2
)  e.  RR  /\  E  e.  RR  /\  ( abs `  ( ( F `
 Z )  -  ( F `  B ) ) )  e.  RR )  ->  ( ( E  /  2 )  < 
E  ->  ( ( E  /  2 )  < 
( abs `  (
( F `  Z
)  -  ( F `
 B ) ) )  \/  ( abs `  ( ( F `  Z )  -  ( F `  B )
) )  <  E
) ) )
4612, 44, 8, 45syl3anc 1271 . . 3  |-  ( ph  ->  ( ( E  / 
2 )  <  E  ->  ( ( E  / 
2 )  <  ( abs `  ( ( F `
 Z )  -  ( F `  B ) ) )  \/  ( abs `  ( ( F `
 Z )  -  ( F `  B ) ) )  <  E
) ) )
4743, 46mpd 13 . 2  |-  ( ph  ->  ( ( E  / 
2 )  <  ( abs `  ( ( F `
 Z )  -  ( F `  B ) ) )  \/  ( abs `  ( ( F `
 Z )  -  ( F `  B ) ) )  <  E
) )
4840, 41, 47mpjaodan 803 1  |-  ( ph  ->  ( abs `  (
( F `  Z
)  -  ( F `
 B ) ) )  <  E )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    /\ w3a 1002    = wceq 1395    e. wcel 2200    C_ wss 3197   class class class wbr 4083    o. ccom 4723   -->wf 5314   ` cfv 5318  (class class class)co 6001   CCcc 7997   RRcr 7998   0cc0 7999    < clt 8181    - cmin 8317   # cap 8728    / cdiv 8819   2c2 9161   RR+crp 9849   abscabs 11508   ↾t crest 13272   MetOpencmopn 14505   lim CC climc 15328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-rp 9850  df-seqfrec 10670  df-exp 10761  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510
This theorem is referenced by:  cnplimclemr  15343
  Copyright terms: Public domain W3C validator