| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > renegcld | Unicode version | ||
| Description: Closure law for negative of reals. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| renegcld.1 |
|
| Ref | Expression |
|---|---|
| renegcld |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | renegcld.1 |
. 2
| |
| 2 | renegcl 8407 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-setind 4629 ax-resscn 8091 ax-1cn 8092 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-sub 8319 df-neg 8320 |
| This theorem is referenced by: eqord2 8631 possumd 8716 reapmul1 8742 reapneg 8744 apneg 8758 mulext1 8759 recgt0 8997 prodgt0 8999 prodge0 9001 negiso 9102 nnnegz 9449 peano2z 9482 nn0negleid 9515 difgtsumgt 9516 supinfneg 9790 infsupneg 9791 infssuzex 10453 zsupssdc 10458 monoord2 10708 recj 11378 reneg 11379 imcj 11386 imneg 11387 cjap 11417 resqrexlemcalc3 11527 resqrexlemgt0 11531 abslt 11599 absle 11600 minmax 11741 mincl 11742 lemininf 11745 ltmininf 11746 bdtri 11751 xrmaxaddlem 11771 xrminrpcl 11785 climge0 11836 cos12dec 12279 absefib 12282 efieq1re 12283 dvdslelemd 12354 bitscmp 12469 bitsinv1lem 12472 4sqexercise2 12922 4sqlemsdc 12923 mulgnegnn 13669 ivthdec 15318 coseq0negpitopi 15510 cosq34lt1 15524 rpabscxpbnd 15614 lgsneg 15703 lgsdilem 15706 lgseisenlem1 15749 |
| Copyright terms: Public domain | W3C validator |