| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > renegcld | Unicode version | ||
| Description: Closure law for negative of reals. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| renegcld.1 |
|
| Ref | Expression |
|---|---|
| renegcld |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | renegcld.1 |
. 2
| |
| 2 | renegcl 8304 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-setind 4574 ax-resscn 7988 ax-1cn 7989 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-sub 8216 df-neg 8217 |
| This theorem is referenced by: eqord2 8528 possumd 8613 reapmul1 8639 reapneg 8641 apneg 8655 mulext1 8656 recgt0 8894 prodgt0 8896 prodge0 8898 negiso 8999 nnnegz 9346 peano2z 9379 nn0negleid 9411 difgtsumgt 9412 supinfneg 9686 infsupneg 9687 infssuzex 10340 zsupssdc 10345 monoord2 10595 recj 11049 reneg 11050 imcj 11057 imneg 11058 cjap 11088 resqrexlemcalc3 11198 resqrexlemgt0 11202 abslt 11270 absle 11271 minmax 11412 mincl 11413 lemininf 11416 ltmininf 11417 bdtri 11422 xrmaxaddlem 11442 xrminrpcl 11456 climge0 11507 cos12dec 11950 absefib 11953 efieq1re 11954 dvdslelemd 12025 bitscmp 12140 bitsinv1lem 12143 4sqexercise2 12593 4sqlemsdc 12594 mulgnegnn 13338 ivthdec 14964 coseq0negpitopi 15156 cosq34lt1 15170 rpabscxpbnd 15260 lgsneg 15349 lgsdilem 15352 lgseisenlem1 15395 |
| Copyright terms: Public domain | W3C validator |