![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > renegcld | Unicode version |
Description: Closure law for negative of reals. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
renegcld.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
renegcld |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | renegcld.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | renegcl 7806 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3965 ax-pow 4017 ax-pr 4047 ax-setind 4368 ax-resscn 7500 ax-1cn 7501 ax-icn 7503 ax-addcl 7504 ax-addrcl 7505 ax-mulcl 7506 ax-addcom 7508 ax-addass 7510 ax-distr 7512 ax-i2m1 7513 ax-0id 7516 ax-rnegex 7517 ax-cnre 7519 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-fal 1296 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ne 2257 df-ral 2365 df-rex 2366 df-reu 2367 df-rab 2369 df-v 2624 df-sbc 2844 df-dif 3004 df-un 3006 df-in 3008 df-ss 3015 df-pw 3437 df-sn 3458 df-pr 3459 df-op 3461 df-uni 3662 df-br 3854 df-opab 3908 df-id 4131 df-xp 4460 df-rel 4461 df-cnv 4462 df-co 4463 df-dm 4464 df-iota 4995 df-fun 5032 df-fv 5038 df-riota 5624 df-ov 5671 df-oprab 5672 df-mpt2 5673 df-sub 7718 df-neg 7719 |
This theorem is referenced by: eqord2 8025 possumd 8109 reapmul1 8135 reapneg 8137 apneg 8151 mulext1 8152 recgt0 8374 prodgt0 8376 prodge0 8378 negiso 8479 nnnegz 8816 peano2z 8849 supinfneg 9146 infsupneg 9147 monoord2 9968 recj 10364 reneg 10365 imcj 10372 imneg 10373 cjap 10403 resqrexlemcalc3 10512 resqrexlemgt0 10516 abslt 10584 absle 10585 minmax 10724 lemininf 10727 ltmininf 10728 climge0 10776 absefib 11123 efieq1re 11124 dvdslelemd 11185 infssuzex 11286 |
Copyright terms: Public domain | W3C validator |