Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > renegcld | Unicode version |
Description: Closure law for negative of reals. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
renegcld.1 |
Ref | Expression |
---|---|
renegcld |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | renegcld.1 | . 2 | |
2 | renegcl 8155 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2136 cr 7748 cneg 8066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-setind 4513 ax-resscn 7841 ax-1cn 7842 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-addcom 7849 ax-addass 7851 ax-distr 7853 ax-i2m1 7854 ax-0id 7857 ax-rnegex 7858 ax-cnre 7860 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-ral 2448 df-rex 2449 df-reu 2450 df-rab 2452 df-v 2727 df-sbc 2951 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-opab 4043 df-id 4270 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-iota 5152 df-fun 5189 df-fv 5195 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-sub 8067 df-neg 8068 |
This theorem is referenced by: eqord2 8378 possumd 8463 reapmul1 8489 reapneg 8491 apneg 8505 mulext1 8506 recgt0 8741 prodgt0 8743 prodge0 8745 negiso 8846 nnnegz 9190 peano2z 9223 nn0negleid 9255 difgtsumgt 9256 supinfneg 9529 infsupneg 9530 monoord2 10408 recj 10805 reneg 10806 imcj 10813 imneg 10814 cjap 10844 resqrexlemcalc3 10954 resqrexlemgt0 10958 abslt 11026 absle 11027 minmax 11167 mincl 11168 lemininf 11171 ltmininf 11172 bdtri 11177 xrmaxaddlem 11197 xrminrpcl 11211 climge0 11262 cos12dec 11704 absefib 11707 efieq1re 11708 dvdslelemd 11777 infssuzex 11878 zsupssdc 11883 ivthdec 13222 coseq0negpitopi 13357 cosq34lt1 13371 rpabscxpbnd 13459 lgsneg 13525 lgsdilem 13528 |
Copyright terms: Public domain | W3C validator |