| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > renegcld | Unicode version | ||
| Description: Closure law for negative of reals. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| renegcld.1 |
|
| Ref | Expression |
|---|---|
| renegcld |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | renegcld.1 |
. 2
| |
| 2 | renegcl 8306 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-setind 4574 ax-resscn 7990 ax-1cn 7991 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-addcom 7998 ax-addass 8000 ax-distr 8002 ax-i2m1 8003 ax-0id 8006 ax-rnegex 8007 ax-cnre 8009 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-sub 8218 df-neg 8219 |
| This theorem is referenced by: eqord2 8530 possumd 8615 reapmul1 8641 reapneg 8643 apneg 8657 mulext1 8658 recgt0 8896 prodgt0 8898 prodge0 8900 negiso 9001 nnnegz 9348 peano2z 9381 nn0negleid 9413 difgtsumgt 9414 supinfneg 9688 infsupneg 9689 infssuzex 10342 zsupssdc 10347 monoord2 10597 recj 11051 reneg 11052 imcj 11059 imneg 11060 cjap 11090 resqrexlemcalc3 11200 resqrexlemgt0 11204 abslt 11272 absle 11273 minmax 11414 mincl 11415 lemininf 11418 ltmininf 11419 bdtri 11424 xrmaxaddlem 11444 xrminrpcl 11458 climge0 11509 cos12dec 11952 absefib 11955 efieq1re 11956 dvdslelemd 12027 bitscmp 12142 bitsinv1lem 12145 4sqexercise2 12595 4sqlemsdc 12596 mulgnegnn 13340 ivthdec 14988 coseq0negpitopi 15180 cosq34lt1 15194 rpabscxpbnd 15284 lgsneg 15373 lgsdilem 15376 lgseisenlem1 15419 |
| Copyright terms: Public domain | W3C validator |