![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > toponss | GIF version |
Description: A member of a topology is a subset of its underlying set. (Contributed by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
toponss | β’ ((π½ β (TopOnβπ) β§ π΄ β π½) β π΄ β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elssuni 3838 | . . 3 β’ (π΄ β π½ β π΄ β βͺ π½) | |
2 | 1 | adantl 277 | . 2 β’ ((π½ β (TopOnβπ) β§ π΄ β π½) β π΄ β βͺ π½) |
3 | toponuni 13518 | . . 3 β’ (π½ β (TopOnβπ) β π = βͺ π½) | |
4 | 3 | adantr 276 | . 2 β’ ((π½ β (TopOnβπ) β§ π΄ β π½) β π = βͺ π½) |
5 | 2, 4 | sseqtrrd 3195 | 1 β’ ((π½ β (TopOnβπ) β§ π΄ β π½) β π΄ β π) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 = wceq 1353 β wcel 2148 β wss 3130 βͺ cuni 3810 βcfv 5217 TopOnctopon 13513 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-un 4434 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2740 df-sbc 2964 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-br 4005 df-opab 4066 df-mpt 4067 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-iota 5179 df-fun 5219 df-fv 5225 df-topon 13514 |
This theorem is referenced by: iscnp3 13706 cnntr 13728 cncnp 13733 tx1cn 13772 tx2cn 13773 txcnp 13774 mopnss 13953 xmettx 14013 |
Copyright terms: Public domain | W3C validator |