ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpspropd Unicode version

Theorem tpspropd 14215
Description: A topological space depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.) (Revised by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
tpspropd.1  |-  ( ph  ->  ( Base `  K
)  =  ( Base `  L ) )
tpspropd.2  |-  ( ph  ->  ( TopOpen `  K )  =  ( TopOpen `  L
) )
Assertion
Ref Expression
tpspropd  |-  ( ph  ->  ( K  e.  TopSp  <->  L  e.  TopSp ) )

Proof of Theorem tpspropd
StepHypRef Expression
1 tpspropd.2 . . 3  |-  ( ph  ->  ( TopOpen `  K )  =  ( TopOpen `  L
) )
2 tpspropd.1 . . . 4  |-  ( ph  ->  ( Base `  K
)  =  ( Base `  L ) )
32fveq2d 5559 . . 3  |-  ( ph  ->  (TopOn `  ( Base `  K ) )  =  (TopOn `  ( Base `  L ) ) )
41, 3eleq12d 2264 . 2  |-  ( ph  ->  ( ( TopOpen `  K
)  e.  (TopOn `  ( Base `  K )
)  <->  ( TopOpen `  L
)  e.  (TopOn `  ( Base `  L )
) ) )
5 eqid 2193 . . 3  |-  ( Base `  K )  =  (
Base `  K )
6 eqid 2193 . . 3  |-  ( TopOpen `  K )  =  (
TopOpen `  K )
75, 6istps 14211 . 2  |-  ( K  e.  TopSp 
<->  ( TopOpen `  K )  e.  (TopOn `  ( Base `  K ) ) )
8 eqid 2193 . . 3  |-  ( Base `  L )  =  (
Base `  L )
9 eqid 2193 . . 3  |-  ( TopOpen `  L )  =  (
TopOpen `  L )
108, 9istps 14211 . 2  |-  ( L  e.  TopSp 
<->  ( TopOpen `  L )  e.  (TopOn `  ( Base `  L ) ) )
114, 7, 103bitr4g 223 1  |-  ( ph  ->  ( K  e.  TopSp  <->  L  e.  TopSp ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2164   ` cfv 5255   Basecbs 12621   TopOpenctopn 12854  TopOnctopon 14189   TopSpctps 14209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-9 9050  df-ndx 12624  df-slot 12625  df-base 12627  df-tset 12717  df-rest 12855  df-topn 12856  df-top 14177  df-topon 14190  df-topsp 14210
This theorem is referenced by:  xmspropd  14656
  Copyright terms: Public domain W3C validator