ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpspropd Unicode version

Theorem tpspropd 12213
Description: A topological space depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.) (Revised by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
tpspropd.1  |-  ( ph  ->  ( Base `  K
)  =  ( Base `  L ) )
tpspropd.2  |-  ( ph  ->  ( TopOpen `  K )  =  ( TopOpen `  L
) )
Assertion
Ref Expression
tpspropd  |-  ( ph  ->  ( K  e.  TopSp  <->  L  e.  TopSp ) )

Proof of Theorem tpspropd
StepHypRef Expression
1 tpspropd.2 . . 3  |-  ( ph  ->  ( TopOpen `  K )  =  ( TopOpen `  L
) )
2 tpspropd.1 . . . 4  |-  ( ph  ->  ( Base `  K
)  =  ( Base `  L ) )
32fveq2d 5425 . . 3  |-  ( ph  ->  (TopOn `  ( Base `  K ) )  =  (TopOn `  ( Base `  L ) ) )
41, 3eleq12d 2210 . 2  |-  ( ph  ->  ( ( TopOpen `  K
)  e.  (TopOn `  ( Base `  K )
)  <->  ( TopOpen `  L
)  e.  (TopOn `  ( Base `  L )
) ) )
5 eqid 2139 . . 3  |-  ( Base `  K )  =  (
Base `  K )
6 eqid 2139 . . 3  |-  ( TopOpen `  K )  =  (
TopOpen `  K )
75, 6istps 12209 . 2  |-  ( K  e.  TopSp 
<->  ( TopOpen `  K )  e.  (TopOn `  ( Base `  K ) ) )
8 eqid 2139 . . 3  |-  ( Base `  L )  =  (
Base `  L )
9 eqid 2139 . . 3  |-  ( TopOpen `  L )  =  (
TopOpen `  L )
108, 9istps 12209 . 2  |-  ( L  e.  TopSp 
<->  ( TopOpen `  L )  e.  (TopOn `  ( Base `  L ) ) )
114, 7, 103bitr4g 222 1  |-  ( ph  ->  ( K  e.  TopSp  <->  L  e.  TopSp ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1331    e. wcel 1480   ` cfv 5123   Basecbs 11969   TopOpenctopn 12131  TopOnctopon 12187   TopSpctps 12207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-cnex 7718  ax-resscn 7719  ax-1re 7721  ax-addrcl 7724
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-inn 8728  df-2 8786  df-3 8787  df-4 8788  df-5 8789  df-6 8790  df-7 8791  df-8 8792  df-9 8793  df-ndx 11972  df-slot 11973  df-base 11975  df-tset 12050  df-rest 12132  df-topn 12133  df-top 12175  df-topon 12188  df-topsp 12208
This theorem is referenced by:  xmspropd  12656
  Copyright terms: Public domain W3C validator