ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpspropd Unicode version

Theorem tpspropd 14623
Description: A topological space depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.) (Revised by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
tpspropd.1  |-  ( ph  ->  ( Base `  K
)  =  ( Base `  L ) )
tpspropd.2  |-  ( ph  ->  ( TopOpen `  K )  =  ( TopOpen `  L
) )
Assertion
Ref Expression
tpspropd  |-  ( ph  ->  ( K  e.  TopSp  <->  L  e.  TopSp ) )

Proof of Theorem tpspropd
StepHypRef Expression
1 tpspropd.2 . . 3  |-  ( ph  ->  ( TopOpen `  K )  =  ( TopOpen `  L
) )
2 tpspropd.1 . . . 4  |-  ( ph  ->  ( Base `  K
)  =  ( Base `  L ) )
32fveq2d 5603 . . 3  |-  ( ph  ->  (TopOn `  ( Base `  K ) )  =  (TopOn `  ( Base `  L ) ) )
41, 3eleq12d 2278 . 2  |-  ( ph  ->  ( ( TopOpen `  K
)  e.  (TopOn `  ( Base `  K )
)  <->  ( TopOpen `  L
)  e.  (TopOn `  ( Base `  L )
) ) )
5 eqid 2207 . . 3  |-  ( Base `  K )  =  (
Base `  K )
6 eqid 2207 . . 3  |-  ( TopOpen `  K )  =  (
TopOpen `  K )
75, 6istps 14619 . 2  |-  ( K  e.  TopSp 
<->  ( TopOpen `  K )  e.  (TopOn `  ( Base `  K ) ) )
8 eqid 2207 . . 3  |-  ( Base `  L )  =  (
Base `  L )
9 eqid 2207 . . 3  |-  ( TopOpen `  L )  =  (
TopOpen `  L )
108, 9istps 14619 . 2  |-  ( L  e.  TopSp 
<->  ( TopOpen `  L )  e.  (TopOn `  ( Base `  L ) ) )
114, 7, 103bitr4g 223 1  |-  ( ph  ->  ( K  e.  TopSp  <->  L  e.  TopSp ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2178   ` cfv 5290   Basecbs 12947   TopOpenctopn 13187  TopOnctopon 14597   TopSpctps 14617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-5 9133  df-6 9134  df-7 9135  df-8 9136  df-9 9137  df-ndx 12950  df-slot 12951  df-base 12953  df-tset 13043  df-rest 13188  df-topn 13189  df-top 14585  df-topon 14598  df-topsp 14618
This theorem is referenced by:  xmspropd  15064
  Copyright terms: Public domain W3C validator