ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnflt GIF version

Theorem mnflt 9222
Description: Minus infinity is less than any (finite) real. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
mnflt (𝐴 ∈ ℝ → -∞ < 𝐴)

Proof of Theorem mnflt
StepHypRef Expression
1 eqid 2088 . . . 4 -∞ = -∞
2 olc 667 . . . 4 ((-∞ = -∞ ∧ 𝐴 ∈ ℝ) → ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ)))
31, 2mpan 415 . . 3 (𝐴 ∈ ℝ → ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ)))
43olcd 688 . 2 (𝐴 ∈ ℝ → ((((-∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ -∞ < 𝐴) ∨ (-∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ))))
5 mnfxr 7523 . . 3 -∞ ∈ ℝ*
6 rexr 7512 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
7 ltxr 9215 . . 3 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*) → (-∞ < 𝐴 ↔ ((((-∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ -∞ < 𝐴) ∨ (-∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ)))))
85, 6, 7sylancr 405 . 2 (𝐴 ∈ ℝ → (-∞ < 𝐴 ↔ ((((-∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ -∞ < 𝐴) ∨ (-∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ)))))
94, 8mpbird 165 1 (𝐴 ∈ ℝ → -∞ < 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wo 664   = wceq 1289  wcel 1438   class class class wbr 3837  cr 7328   < cltrr 7333  +∞cpnf 7498  -∞cmnf 7499  *cxr 7500   < clt 7501
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-cnex 7415
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-br 3838  df-opab 3892  df-xp 4434  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506
This theorem is referenced by:  mnflt0  9223  mnfltxr  9225  xrlttr  9234  xrltso  9235  xrlttri3  9236  ngtmnft  9249  xrrebnd  9250  xrre3  9253  xltnegi  9266  elico2  9324  elicc2  9325  ioomax  9335  elioomnf  9355  qbtwnxr  9634
  Copyright terms: Public domain W3C validator