![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mnflt | GIF version |
Description: Minus infinity is less than any (finite) real. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
mnflt | ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2115 | . . . 4 ⊢ -∞ = -∞ | |
2 | olc 683 | . . . 4 ⊢ ((-∞ = -∞ ∧ 𝐴 ∈ ℝ) → ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ))) | |
3 | 1, 2 | mpan 418 | . . 3 ⊢ (𝐴 ∈ ℝ → ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ))) |
4 | 3 | olcd 706 | . 2 ⊢ (𝐴 ∈ ℝ → ((((-∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ -∞ <ℝ 𝐴) ∨ (-∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ)))) |
5 | mnfxr 7746 | . . 3 ⊢ -∞ ∈ ℝ* | |
6 | rexr 7735 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
7 | ltxr 9455 | . . 3 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (-∞ < 𝐴 ↔ ((((-∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ -∞ <ℝ 𝐴) ∨ (-∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ))))) | |
8 | 5, 6, 7 | sylancr 408 | . 2 ⊢ (𝐴 ∈ ℝ → (-∞ < 𝐴 ↔ ((((-∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ -∞ <ℝ 𝐴) ∨ (-∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ))))) |
9 | 4, 8 | mpbird 166 | 1 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 680 = wceq 1314 ∈ wcel 1463 class class class wbr 3895 ℝcr 7546 <ℝ cltrr 7551 +∞cpnf 7721 -∞cmnf 7722 ℝ*cxr 7723 < clt 7724 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-pow 4058 ax-pr 4091 ax-un 4315 ax-cnex 7636 |
This theorem depends on definitions: df-bi 116 df-3an 947 df-tru 1317 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ral 2395 df-rex 2396 df-v 2659 df-un 3041 df-in 3043 df-ss 3050 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-br 3896 df-opab 3950 df-xp 4505 df-pnf 7726 df-mnf 7727 df-xr 7728 df-ltxr 7729 |
This theorem is referenced by: mnflt0 9463 mnfltxr 9465 xrlttr 9474 xrltso 9475 xrlttri3 9476 ngtmnft 9493 nmnfgt 9494 xrrebnd 9495 xrre3 9498 xltnegi 9511 xltadd1 9552 xposdif 9558 elico2 9613 elicc2 9614 ioomax 9624 elioomnf 9644 qbtwnxr 9928 tgioo 12532 |
Copyright terms: Public domain | W3C validator |