ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnflt GIF version

Theorem mnflt 9877
Description: Minus infinity is less than any (finite) real. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
mnflt (𝐴 ∈ ℝ → -∞ < 𝐴)

Proof of Theorem mnflt
StepHypRef Expression
1 eqid 2196 . . . 4 -∞ = -∞
2 olc 712 . . . 4 ((-∞ = -∞ ∧ 𝐴 ∈ ℝ) → ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ)))
31, 2mpan 424 . . 3 (𝐴 ∈ ℝ → ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ)))
43olcd 735 . 2 (𝐴 ∈ ℝ → ((((-∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ -∞ < 𝐴) ∨ (-∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ))))
5 mnfxr 8102 . . 3 -∞ ∈ ℝ*
6 rexr 8091 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
7 ltxr 9869 . . 3 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*) → (-∞ < 𝐴 ↔ ((((-∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ -∞ < 𝐴) ∨ (-∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ)))))
85, 6, 7sylancr 414 . 2 (𝐴 ∈ ℝ → (-∞ < 𝐴 ↔ ((((-∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ -∞ < 𝐴) ∨ (-∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ)))))
94, 8mpbird 167 1 (𝐴 ∈ ℝ → -∞ < 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wcel 2167   class class class wbr 4034  cr 7897   < cltrr 7902  +∞cpnf 8077  -∞cmnf 8078  *cxr 8079   < clt 8080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-cnex 7989
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-xp 4670  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085
This theorem is referenced by:  mnflt0  9878  mnfltxr  9880  xrlttr  9889  xrltso  9890  xrlttri3  9891  ngtmnft  9911  nmnfgt  9912  xrrebnd  9913  xrre3  9916  xltnegi  9929  xltadd1  9970  xposdif  9976  elico2  10031  elicc2  10032  ioomax  10042  elioomnf  10062  qbtwnxr  10366  tgioo  14898
  Copyright terms: Public domain W3C validator