ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnflt GIF version

Theorem mnflt 9975
Description: Minus infinity is less than any (finite) real. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
mnflt (𝐴 ∈ ℝ → -∞ < 𝐴)

Proof of Theorem mnflt
StepHypRef Expression
1 eqid 2229 . . . 4 -∞ = -∞
2 olc 716 . . . 4 ((-∞ = -∞ ∧ 𝐴 ∈ ℝ) → ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ)))
31, 2mpan 424 . . 3 (𝐴 ∈ ℝ → ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ)))
43olcd 739 . 2 (𝐴 ∈ ℝ → ((((-∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ -∞ < 𝐴) ∨ (-∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ))))
5 mnfxr 8199 . . 3 -∞ ∈ ℝ*
6 rexr 8188 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
7 ltxr 9967 . . 3 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*) → (-∞ < 𝐴 ↔ ((((-∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ -∞ < 𝐴) ∨ (-∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ)))))
85, 6, 7sylancr 414 . 2 (𝐴 ∈ ℝ → (-∞ < 𝐴 ↔ ((((-∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ -∞ < 𝐴) ∨ (-∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ)))))
94, 8mpbird 167 1 (𝐴 ∈ ℝ → -∞ < 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 713   = wceq 1395  wcel 2200   class class class wbr 4082  cr 7994   < cltrr 7999  +∞cpnf 8174  -∞cmnf 8175  *cxr 8176   < clt 8177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-cnex 8086
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-xp 4724  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182
This theorem is referenced by:  mnflt0  9976  mnfltxr  9978  xrlttr  9987  xrltso  9988  xrlttri3  9989  ngtmnft  10009  nmnfgt  10010  xrrebnd  10011  xrre3  10014  xltnegi  10027  xltadd1  10068  xposdif  10074  elico2  10129  elicc2  10130  ioomax  10140  elioomnf  10160  qbtwnxr  10472  tgioo  15222
  Copyright terms: Public domain W3C validator